Predict your next investment

Corporation
CONSUMER PRODUCTS & SERVICES | Household
thelegacycompanies.com

See what CB Insights has to offer

Stage

Mezzanine - II | Alive

Total Raised

$70M

About The Legacy Companies

The Legacy Companies is a food service and consumer products company that designs, manufactures, and markets, nationally and internationally, a diverse portfolio of products under world-class brands.

The Legacy Companies Headquarter Location

3355 Enterprise Ave Suite 160

Fort Lauderdale, Florida, 33331,

United States

954-202-7419

Latest The Legacy Companies News

Legacy Companies’ Biggest AI Challenge Often Isn’t What You Might Think

Sep 15, 2021

getty When starting out to deploy artificial intelligence (AI) and machine learning (ML), executives of legacy companies often view the challenges mainly as technical problems — particularly finding sources of internal data to analyze and choosing the right tools. What they may not appreciate is just how data-rich their legacy companies already are. ​From utilities and mining, transportation and shipping, to financial services and more, legacy company operations and customer interactions generate a wealth of data. Such data can be harnessed to tackle a very wide range of issues: optimizing supply chains, predicting maintenance, reducing accidents, increasing production output, improving operational efficiency, raising revenue productivity, and growing customer value. ​To realize these opportunities using AI, however, legacy companies worldwide typically soon discover that their biggest problem is not technology — it’s talent. Demand  for data scientists and analysts is intense and continues to exceed supply. Amazon, Facebook, Google, and other tech leaders hire massive numbers of data scientists, offering them fascinating challenges and compelling opportunities. By comparison, from the viewpoint of a sharp data scientist with leading-edge AI proficiency, a 100-year-old company that makes tractors, manufactures appliances, operates power plants, or ships containers may seem “boring.” ​In addition, legacy companies are often located outside of major tech hubs such as Silicon Valley, Seattle, Austin, New York, or Los Angeles — all of which can make it even more difficult for legacy companies to find the data scientists they need. There is a solution: a two-pronged talent strategy of hiring externally and building internally. Recruiting Talent Using Interesting Problems ​To attract data scientists, legacy companies can and should focus on the compelling, unique, and real-world business problems that they offer. As Grant Case, director of sales engineering for Dataiku, a leader in applying AI and ML for enterprises, who works with legacy companies in Australia and New Zealand, told me recently, “We need to give data scientists interesting problems to work on and turn into value. That’s where the magic happens.” MORE FOR YOU ● Unsnarling extraordinarily complex airline systems when weather closes multiple hubs ● Optimizing electricity grids and storage in a world of distributed, multi-directional, production, transmission, and storage ● Predicting accidents to reduce on-the-job injuries ● Optimizing global shipping networks and supply chains in real time for millions of containers every day ● Maximizing crop production from each square foot/meter of earth ​ Berian James , head of data science and AI at Maersk, the global shipping giant, described optimizing their shipping network as “a really interesting data science problem.” Maersk uses AI and ML to address a wide range of problems and opportunities, from providing its customers with “arrival intelligence” for their shipments to advancing the company’s decarbonization efforts. ​Virtually every legacy enterprise, if executives stop and think about it, offers fascinating business questions, problems, and challenges that can stimulate the intellectual curiosity and challenge the technical proficiency of data scientists and AI talent. Thus, an emerging best practice for legacy companies to recruit the talent they need is to use these interesting questions to offer data scientists fresh opportunities to personally address and have an impact in solving engaging, unique business problems. Such scenarios may be more appealing than becoming the latest addition to the multitude at Facebook, Apple, Netflix, Alphabet, and similar firms. Developing Homegrown Talent—Combining the Right Aptitude with Business Understanding  ​Hiring data scientists externally isn’t the only solution. While it’s not the answer in every case, developing data science and AI proficiency with internal talent is often faster, easier and more productive, and can be more than sufficient for a wide range of business purposes. Internal subject-matter experts, who have the right aptitudes and interests, already understand the business. This can be more desirable and impactful than going outside the company to hire a data scientist who — although technically advanced — is unfamiliar with the industry and business-specific or company-specific problems and challenges. I’ve heard many stories from executives at legacy companies that hired data scientists and embedded them into the business with great hopes — only to be disappointed when it proved difficult to integrate those data scientists with the ongoing business management and processes. ​While internally developed talent may not replace the most advanced data scientists for the knottiest problems, they can often significantly advance the company’s AI and ML use and produce material business value. Certain disciplines found within legacy companies are particularly well-suited to developing AI and ML expertise. Engineers of all types, operations researchers, physical scientists, revenue managers, and others typically have the technical foundation, quantitative aptitude, proficiency with data, and intellectual curiosity to learn how to apply AI and ML and develop the capabilities to do so. ​Case gave the example of a steel company where chemists and metallurgists deal with production challenges that could be addressed with data and AI. “You can find talented individuals who want to progress in their careers and enable them with the right training,” he told me. Plus, they typically have the important advantage of understanding the business and, thus, credibility with business leaders. Solving the People Problem It is increasingly evident, in talking with executives in a wide range of legacy companies who are working to apply AI and ML, that the biggest challenges are culture, connecting data science and AI to business management and processes and, particularly, finding the talent needed. It’s not primarily a technical problem. As executives of these companies tell me, the ongoing challenges are finding the right people and incorporating them, along with AI applications, into the actual working of an enterprise. These observations demonstrate that now, more than ever, using data science and AI to realize practical gains requires adept business leadership. Senior leaders must understand what really drives and enables data scientists so that their companies can attract, grow, and integrate this talent in a legacy business to create business value. Follow me on  Twitter  or  LinkedIn . Check out my  website .

Predict your next investment

The CB Insights tech market intelligence platform analyzes millions of data points on venture capital, startups, patents , partnerships and news mentions to help you see tomorrow's opportunities, today.

The Legacy Companies Web Traffic

Rank
Page Views per User (PVPU)
Page Views per Million (PVPM)
Reach per Million (RPM)
CBI Logo

The Legacy Companies Rank

CB Insights uses Cookies

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.