Search company, investor...
SnapLogic company logo

SnapLogic

snaplogic.com

Founded Year

2006

Stage

Series I | Alive

Total Raised

$397.86M

Valuation

$0000 

Last Raised

$165M | 1 yr ago

About SnapLogic

SnapLogic specializes in self-service integration. The company's cloud-based platform makes it fast and easy to connect data, applications, and devices, eliminating business silos and technology bottlenecks to accelerate digital business.

Headquarters Location

1825 South Grant Street 5th Floor

San Mateo, California, 94402,

United States

888-494-1570

SnapLogic's Product Videos

ESPs containing SnapLogic

The ESP matrix leverages data and analyst insight to identify and rank leading companies in a given technology landscape.

EXECUTION STRENGTH ➡MARKET STRENGTH ➡LEADERHIGHFLIEROUTPERFORMERCHALLENGER
Emerging Tech / Development

API management is the process of building and documenting APIs, supervising and distributing access, and analyzing performance.

SnapLogic named as Leader among 11 other companies, including TIBCO Software, Boomi, and WSO2.

Compete with SnapLogic?

Ensure that your company and products are accurately represented on our platform.

SnapLogic's Products & Differentiators

    SnapLogic Intelligent iPaaS

    Intelligent iPaaS

Research containing SnapLogic

Get data-driven expert analysis from the CB Insights Intelligence Unit.

CB Insights Intelligence Analysts have mentioned SnapLogic in 1 CB Insights research brief, most recently on May 4, 2021.

Expert Collections containing SnapLogic

Expert Collections are analyst-curated lists that highlight the companies you need to know in the most important technology spaces.

SnapLogic is included in 2 Expert Collections, including Unicorns- Billion Dollar Startups.

U

Unicorns- Billion Dollar Startups

1,204 items

T

Tech IPO Pipeline

282 items

Track and capture company information and workflow.

SnapLogic Patents

SnapLogic has filed 1 patent.

patents chart

Application Date

Grant Date

Title

Related Topics

Status

9/21/2012

Data types, Data management, Network protocols, Serial buses, Industrial computing

Application

Application Date

9/21/2012

Grant Date

Title

Related Topics

Data types, Data management, Network protocols, Serial buses, Industrial computing

Status

Application

Latest SnapLogic News

Data integration vs. data ingestion: What are the differences?

Jan 19, 2023

Image: Murrstock/Adobe Stock With the increasing amount of data being produced, businesses need better ways to handle and use the information they collect. Data integration and data ingestion are essential components of a successful data strategy and help organizations make the most of their data assets. Data integration and data ingestion are two essential concepts in data management that are often used interchangeably, but they are two distinct processes that serve specific business purposes. By understanding the differences between data integration and data ingestion, organizations can ensure they are using the most effective data management solution for each project and business data use case. Jump to: What is data integration? Data integration combines data from different sources and transforms it into a unified view for easier access and analysis. The process merges data from disparate sources, such as databases, APIs, applications, files, spreadsheets and websites. Data integration is typically achieved by an extract, transform, load process. The ETL process extracts data from different sources, transforms it into a standard format and loads it into a data warehouse. This allows the data to be queried, analyzed and used in other applications. How does data integration work? The data integration process begins by extracting data from disparate sources, like databases, flat files, web services or other applications. Once data is extracted, it is transformed to make it consistent. This transformation can include filtering, sorting, deduplication and even formatting the data into a desired schema. Transformed data is then loaded into a unified target system, like a data warehouse or a single file. Once the data is combined and processed, data practitioners can use it to build dashboards, visualize trends, predict outcomes or generate reports. With data integration, companies can develop faster decision-making capabilities due to improved data governance and automated processes. They can also become more agile and respond faster to changing customer needs. Best business software Manual data integration This type of integration typically requires manual entry of data from one system into another or the use of scripts or programs to move data between the two systems. Manual data integration is usually performed for small-scale data integration projects or maintaining data integrity between two systems. Middleware data integration Middleware data integration involves using software that acts as an intermediary between two or more applications to facilitate data exchange from legacy systems to modern applications. Application-based integration Application-based integration software locates, retrieves and integrates data from disparate sources into destination systems. This can involve using a custom-built or pre-packaged application designed to integrate data. Uniform access integration This data integration method allows users to access data from multiple sources in a consistent format while ensuring the source data remains intact and secure. This strategy enables users to view and interact with data from different sources without replicating or transferring it from its original location. Common storage data integration This type of data integration makes it possible for data to be copied from source systems to a new system. This method combines data from disparate sources, allowing for more comprehensive analytics and insights. What is data ingestion? Data ingestion involves moving data from one source or location to another to be stored in a data lake, data mart, database or data warehouse. It consists of extracting data from its original format, transforming it into an appropriate form for storage and then loading it into the destination system. The data is often extracted from CSV, Excel, JSON and XML files. Data ingestion differs from data integration in that it does not involve processing the data before it is loaded into the destination system. Instead, it is simply transferring data from one system to another. This means data is transferred in its raw form with no modification or filtering applied. How does data ingestion work? Data ingestion collects data from multiple sources and loads it into a data repository or warehouse. The data can be collected in real-time or in batches. The data is then processed and transformed, using ETL processes to prepare it for analysis. Alternatively, ETL processes can be used to load raw data as quickly as possible before transformations. After data transformations are complete, the data is loaded into the target system, such as a database, cloud storage platform or analytics engine. Types of data ingestion Batch ingestion Streaming ingestion This type of data ingestion involves collecting and processing data in real time. Stream ingestion is often used for low-latency applications that focus on tasks like real-time analytics, fraud detection and stock market analysis. Hybrid data ingestion Hybrid data ingestion combines batch and streaming ingestion practices. This approach is used for data that requires a batch layer and streaming layer for complete data ingestion. Common challenges of data integration and ingestion Data integration and ingestion can be complex processes and present unique challenges. Here are some of the common issues that organizations face when dealing with these two data management tasks. Data quality Data quality issues can arise due to the different data formats that come together from various sources. This can lead to data discrepancies, delays in data integration and incorrect results. Poor data quality may result from incorrect formatting, entry or coding, leading to inaccurate insights and bad decisions. Data volume The amount of data that needs to be processed can be too large for traditional platforms, making it difficult to process data promptly. Security challenges Organizations must take extra precautions to ensure their data remains secure during data integration and ingestion. This includes encrypting data before it is sent or stored in a cloud-based system and setting up access control measures to limit who can view it. Scalability challenges As businesses grow, they need to invest in tools and resources to scale their data integration and ingestion processes. Otherwise, they could risk losing valuable insights and opportunities due to slow or outdated data processing. Cost Data integration and ingestion require an investment of both time and money. Depending on the project’s complexity, costs can vary significantly, so it is important to consider the resources your project requires and how much they’ll impact your budget. Data integration and ingestion tools are necessary for organizations that collect, store and manage large amounts of data. These tools allow for the efficient retrieval, manipulation and analysis of data from multiple sources. Data integration tools Image: SnapLogic SnapLogic is an enterprise integration platform as a service that enables organizations to integrate data, applications and APIs across on-premises and cloud-based systems. It provides a visual, drag-and-drop interface to quickly connect cloud and on-premises applications and data sources, automate processes and create robust data pipelines that span multiple systems. SnapLogic’s iPaaS includes a library of more than 500 pre-built connectors, also known as Snaps, and an AI-powered assistant to help users quickly find and connect the right applications and data sources. Oracle Data Integrator 12C Image: Oracle Oracle Data Integrator 12c is an ELT platform that moves and transforms data between multiple databases and other sources. It is designed to automate data integration processes and is used to build and maintain efficient data management solutions. ODI 12c is a platform-independent, standards-based data integration product that supports the full spectrum of data integration requirements. This includes batch and real-time data integration as well as big data integration. IBM Cloud Pak for Data Image: IBM IBM Cloud Pak for Data is an integrated data and AI platform that helps organizations make better decisions faster. It is built on open source technology and provides powerful tools to help businesses unify their data, gain insights and automate processes. It enables organizations to securely manage, analyze and share data across multiple clouds and on-premises environments. Data ingestion tools Image: Apache Apache NiFi is an open-source software project that provides a data flow platform for managing and automating data movement between different systems. It is designed to automate data flow between systems, making it easy to collect, route and process data from source to destination. It provides low latency and high throughput, dynamic prioritization, loss tolerance and guaranteed delivery. Talend Image: Talend Talend is a unified platform for data integration and integrity across various sources and systems. It enables users to access and integrate data from both on-premises and cloud-based sources, cleanse and govern it , and deliver trusted data to decision-makers. It also allows users to build, deploy and manage data pipelines to process data in real time.

SnapLogic Frequently Asked Questions (FAQ)

  • When was SnapLogic founded?

    SnapLogic was founded in 2006.

  • Where is SnapLogic's headquarters?

    SnapLogic's headquarters is located at 1825 South Grant Street, San Mateo.

  • What is SnapLogic's latest funding round?

    SnapLogic's latest funding round is Series I.

  • How much did SnapLogic raise?

    SnapLogic raised a total of $397.86M.

  • Who are the investors of SnapLogic?

    Investors of SnapLogic include Sixth Street Growth, Arrowroot Capital, Golub Capital, Andreessen Horowitz, Ignition Partners and 15 more.

  • Who are SnapLogic's competitors?

    Competitors of SnapLogic include Matillion, Cinchy, WSO2, Hevo Data, CData Software, Informatica, Solo.io, FiveTran, Tyk Technologies, Postman and 21 more.

  • What products does SnapLogic offer?

    SnapLogic's products include SnapLogic Intelligent iPaaS.

  • Who are SnapLogic's customers?

    Customers of SnapLogic include Adobe, Box, WD-40, aramark and Bristol Meyers Squib.

Compare SnapLogic to Competitors

TIBCO Software Logo
TIBCO Software

TIBCO Software focuses on infrastructure and business intelligence software. It offers products such as TIBCO Cloud integration, TIBCO Cloud API management, TIBCO BusinessWorks, TIBCO BusinessConnect and more. The company caters to banking, credit union, energy, government, healthcare, insurance and more. TIBCO Software was founded in 1997 and is based in Palo Alto, California.

CData Software Logo
CData Software

CData Software provides data access and connectivity solutions. CData Software specializes in the development of drivers and data access technologies for real-time access to online or on-premise applications, databases, and Web APIs.

Matillion Logo
Matillion

Matillion provides data integration and transformation solution for cloud and cloud data warehouses. Its solutions include data transformation, data analytics, data integration, data lakes, data preparation, and data governance. The company serves enterprises and small and midsize businesses (SMBs). Matillion was founded in 2011 and is based in Altrincham, U.K.

Denodo Logo
Denodo

Denodo is the leader in data virtualization providing agile, high performance data integration and data abstraction across the broadest range of enterprise, cloud, big data, unstructured data sources and real-time data services at half the cost of traditional approaches. Denodo's customers across every major industry have gained significant business agility and ROI by enabling faster and easier access to unified business information for agile BI, big data analytics, Web and cloud integration, single-view applications, and enterprise data services.

Precisely Logo
Precisely

Precisely specializes in data integrity, providing accuracy and consistency in data for customers in more than 100 countries. Precisely’s data integration, data quality, location intelligence, and data enrichment products power better business decisions to create better outcomes. The company was founded in 1992 and is based in Burlington, Massachusetts.

FiveTran Logo
FiveTran

Fivetran fully automated connectors sync data from cloud applications, databases, event logs and more into the data warehouse.

Discover the right solution for your team

The CB Insights tech market intelligence platform analyzes millions of data points on vendors, products, partnerships, and patents to help your team find their next technology solution.

Request a demo

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.