Search company, investor...

Pegasus Semiconductor

pegasus-semiconductor.com

Founded Year

2004

Stage

Other Investors | Alive

About Pegasus Semiconductor

Pegasus Semiconductors has been founded by people with vast experience in the semiconductor and solar industry consisting of alumni from IIM Ahmedabad, IIT Bombay and IIT Kharagpur. Committed to making solar energy truly and improve the dignity and quality of life for the underprivileged people in rural India, the company provide a range of latest innovations in power saving devices (LED based lamps) and energy generation methods (thin film amorphous silicon panels).

Headquarters Location

India

Missing: Pegasus Semiconductor's Product Demo & Case Studies

Promote your product offering to tech buyers.

Reach 1000s of buyers who use CB Insights to identify vendors, demo products, and make purchasing decisions.

Missing: Pegasus Semiconductor's Product & Differentiators

Don’t let your products get skipped. Buyers use our vendor rankings to shortlist companies and drive requests for proposals (RFPs).

Expert Collections containing Pegasus Semiconductor

Expert Collections are analyst-curated lists that highlight the companies you need to know in the most important technology spaces.

Pegasus Semiconductor is included in 1 Expert Collection, including Renewable Energy.

R

Renewable Energy

3,995 items

This collection contains upstream and downstream solar companies, as well as those who manufacture and sell products that are powered by solar technology.

Pegasus Semiconductor Patents

Pegasus Semiconductor has filed 1 patent.

patents chart

Application Date

Grant Date

Title

Related Topics

Status

10/12/2016

6/20/2017

Computer memory, Computer storage devices, Computer peripherals, Integrated circuits, Flash file systems

Grant

Application Date

10/12/2016

Grant Date

6/20/2017

Title

Related Topics

Computer memory, Computer storage devices, Computer peripherals, Integrated circuits, Flash file systems

Status

Grant

Pegasus Semiconductor Frequently Asked Questions (FAQ)

  • When was Pegasus Semiconductor founded?

    Pegasus Semiconductor was founded in 2004.

  • What is Pegasus Semiconductor's latest funding round?

    Pegasus Semiconductor's latest funding round is Other Investors.

  • Who are the investors of Pegasus Semiconductor?

    Investors of Pegasus Semiconductor include GVFL and Centre for Innovation Incubation and Entrepreneurship.

  • Who are Pegasus Semiconductor's competitors?

    Competitors of Pegasus Semiconductor include Twin Creeks Technologies, Accustrata, Jem Enterprises, M V Systems, Anteos and 13 more.

Compare Pegasus Semiconductor to Competitors

A
AOS Solar

AOS Solar was started in 2005 to combine the material cost and manufacturing process economics of thin film solar PV with the efficiency and reliability of crystalline silicon solar PV. The company have an initial prototype solar coupon built and tested using technology. nnThe company's key enablers to achieve market traction are the cost and reliability of the company's product. The silicon on glass (SOG) technology the company are developing will enable solar panels costing around $1/watt to manufacture on the company's pilot line, with lower costs as the company ramp up production due to manufacturing efficiencies and learning curve. Solar silicon is an established technology with proven 20+ year life (versus newer thin film technologies). nnToday the company have working coupons at 7.5% efficiency and the company are working to scale up to larger cells with target 9% efficiency in Q-1, 2008. The company's form factor and efficiency limits are based on first generation technology. By scaling the company's manufacturing and improving the company's technology the company expect to achieve 16 - 18% efficiency in a single junction and 22 - 24% efficiency in a double junction module. nnThe company's A round funding will be used to continue development of the company's equipment / process technology in order to manufacture on larger substrates (2.5' x 4' glass) and to design a scaled up manufacturing line (30+MW annual capacity) based on this development.

G
GreenStone Technologies

GreenStone Technologies is focused on developing next generation of thin film solar photovoltaics using CIGS (Copper indium gallium selenide) nanotechnology. GreenStone also performs custom contract substrate manufacturing.

U
Ultrasonic Technologies

Ultrasonic Technologies is a company that received a SBIR Phase I grant for a project entitled: Resonance Ultrasonic Vibrations for Defect Characterization in Solar Silicon Wafers. Their Phase I research project addresses fundamentals of the innovative experimental methodology for quick and accurate assessment of mechanical defects in solar-grade full-size (up to 210 mm) silicon (Si) wafers. The objective is to justify a commercial prototype of the Resonance Ultrasonic Vibrations (RUV) system which ultimately will be used as a real-time in-line process control tool for identification and rejection from a solar cell production line of mechanically unstable, i.e. fragile wafers due to periphery cracks and high level of residual stress. The broader impact of the program will be in the commercialization of the RUV system to address critical needs of the photovoltaic (PV) industry. The world-wide PV market exhibits a steady yearly up to 40% growth rate in recent years. There is potential for applying this approach to other technologies, such as stress monitoring in Silicon-on isolator wafers and SiGe epitaxial layers in high-speed electronics and adhesion quality assessment in thin polycrystalline Si films on glass for flat panel displays.

M
Meridian Deployment Corporation

Meridian Deployment Corporation is a company that received a SBIR Phase I grant for a project entitled: Motion-Free Tracking Solar Concentrator. Their project investigates novel optical element (OE) for Photovoltaic (PV) systems that uses refractive index modulation to steer sunlight. It addresses the fundamental challenge of tracking the motion of the sun while keeping the concentrated light on the target. For decades this has been accomplished electro-mechanically using motors and feedback circuitry to physically move the optics and/or the target so that the device is always aligned with the sun. This project develops a simple, motion-free tracking system that eliminates all the negative aspects of current mechanical trackers. It is suitable for deployment on any PV system by adapting the optical characteristics. The project goals are to optimize design elements of the OE including materials, configuration and manufacturing technique, and building prototypes for testing in both lab and field sites. Phase I will establish a prototype of a motion-free tracking collector and concentrator that will address three interconnected design issues. These are 1) maximizing throughput of the device by eliminating unwanted reflections from various interfaces, 2) maximizing the range of solar incidence angles, and 3) lowering the cost of the finished device for commercialization. The broader impact/commercial potential of this project will be to enable widespread adoption of localized solar power generation. This technology solves the inherent complexity of simultaneously realizing mechanical stability under wind and seismic loading, electro-mechanical tracking accuracy, and eliminates high costs associated with mechanical trackers. Phase I of this program will establish technical benchmarks to maximize the steering range and light concentration ratio for a novel motion-free tracking system. New conductive coatings are index-matched to minimize internal reflections that cause loss of light throughput, while lens geometries and other components will be engineered to maximize efficiency of the system. Because the device is low-profile and lightweight, it can be easily installed on existing rooftops without requiring substantial structural reinforcement, making commercial acceptance likely. This motion-free tracking technology has these commercial advantages over existing solar PV systems: simple, inexpensive installation, low profile esthetics, and more efficient solar power generation for commercial and residential installations. In summary, it will generate more electricity from a smaller footprint for lower overall cost.

T
Telio Solar Technologies

Telio Solar Technologies, Inc. is a company focusing on development & manufacturing of CIGS Thin Film Solar Cells. The company's goal is to produce the most cost effective manufacturing technology for CIGS solar modules in large scale and achieve one of the highest CIGS cell efficiency and yield in the industry. The company believe the company can accelerate the advancement of CIGS technology and its successful commercialization. CIGS is prospected to be the solar cell technology with the advantages of high energy conversion efficiency, production throughputs and cost-effective production and Telio Solar intends to fully optimize these advantages to bring mass production to the market.

A
Accustrata

Accustrata is a company that received a SBIR Phase IB grant for a project entitled: Real time optical control system for thin film solar cell manufacturing. Their research project relates to a real-time optical control system in the manufacture of next generation thin film solar cells and panels. The proposed system improves thin film solar cell manufacturing by improving the quality of the individual solar cells and panels. It allows manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. The proposed system uses patented miniature fiber optic sensors, installed at many locations in the film deposition chambers. They monitor different spots on the substrate and obtain real time measurements of film properties. The system compares the measured with the targeted values and provides immediate correction, improving film uniformity and narrowing material property distribution. It returns most of the products to their targeted specification, which would otherwise be rejected. This proposal will reduce waste and improve the manufacturing yield and the conversion efficiency of thin film solar cells and panels. It has specific benefits for the large-size solar panels, which are manufactured at higher cost today due to insufficient manufacturing yield. The proposed technology will reduce the time it takes for solar panels to reach grid parity with traditional energy sources. The proposed technology will also facilitate the development of numerous other applications for next generation thin film based products such as photonic crystals, nanotechnology, meta-materials, multi-junction solar cells, printing and counterfeiting control. This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).

Discover the right solution for your team

The CB Insights tech market intelligence platform analyzes millions of data points on vendors, products, partnerships, and patents to help your team find their next technology solution.

Request a demo

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.