The profile is currenly unclaimed by the seller. All information is provided by CB Insights.

rmst.co.il

About MST

Founded by Dov Raviv, MST will build CPV solar farms in combination with Vanadium flow battery storage.  Their website claims the major cost reduction element will be achieved by constructing automatic production and assembly lines.

MST Headquarter Location

Jerusalem Technology Park; Building 8 Floor 3 P.O.Box 48223

91481,

Israel

Predict your next investment

The CB Insights tech market intelligence platform analyzes millions of data points on venture capital, startups, patents , partnerships and news mentions to help you see tomorrow's opportunities, today.

Expert Collections containing MST

Expert Collections are analyst-curated lists that highlight the companies you need to know in the most important technology spaces.

MST is included in 1 Expert Collection, including Renewable Energy.

R

Renewable Energy

3,948 items

This collection contains upstream and downstream solar companies, as well as those who manufacture and sell products that are powered by solar technology.

MST Patents

MST has filed 5 patents.

The 3 most popular patent topics include:

  • Fluid dynamics
  • Actuators
  • BMW engines
patents chart

Application Date

Grant Date

Title

Related Topics

Status

12/26/2013

5/3/2016

Quantum field theory, Quantum mechanics, Particle physics, Theoretical physics, Physical cosmology

Grant

Application Date

12/26/2013

Grant Date

5/3/2016

Title

Related Topics

Quantum field theory, Quantum mechanics, Particle physics, Theoretical physics, Physical cosmology

Status

Grant

  • Who are MST's competitors?

    Competitors of MST include NEI Corporation, Accustrata, Keahole Solar Power, Meridian Deployment Corporation, Anteos and 12 more.

You May Also Like

Cool Earth Solar Logo
Cool Earth Solar

Cool Earth Solar works on the development of concentrated photovoltaic cell (CPV) system. Instead of using rigid aluminum or glass structures to focus light, the company uses metallized plastic films. And, instead of using ribs, trusswork, or material heft to maintain the mirror shape, the company use active inflation air. The company also actively water cool the company's photovoltaic cells to remove waste heat in contrast to the large, material-intensive heat spreaders and sinks used by most other CPV companies.Serendipitously, inflation air aims to allow us to make an effective concentrator from nothing but thin clear and reflective plastic films bonded to each other like a conventional foil balloon. The inflated structure is lightweight and strong enough to survive 125 mph winds. The company optimize the optical properties of the balloon by actively controlling its inflation. The balloon also forms a protective barrier around the company's PV cell.

A
All Best Materials

Q1 Nanosystems Corp is a company that received a SBIR Phase I grant for a project entitled: Surface Engineering Processes of Au Nanostructures Array. Their project will investigate the feasibility of engineering surface treatments of nanowires in a nanostructure array. The project will explore smoothing and roughening surfaces for different applications using electrochemical treatments. This project will grow nanowire arrays using a patterned mask that create highly ordered and perfectly oriented nanowires of controlled dimensions, which conventional methods dont allow. This research will demonstrate consistently controllable pre-treatments of nanostructures and nanostructured arrays suitable for a variety of high-precision devices, like solar cells or sensors. Techniques to control and characterize surface properties of gold (Au) nanowire array obtained by template synthesis are the focus of this proposal. This project will use nanoimprinting as a cost-effective technology that enables tailored fabrication of nanostructures. This project will examine two surface engineering processes never before applied to nanostructures. These surface treatments are based on restricting surface treatments to the top-most atomic layers of nanoscale structures. Techniques to control and verify the quality of surfaces and interfaces are especially important when subsequent layers are extremely thin, as is the case with solar cells, the intended application. Results lay the foundation for creating economical and consistently high-precision nanostructure array templates and arrays. The broader impact/commercial potential of this project will be arrays of nanostructures of precise dimensions and surface quality; although this project has targeted solar cells, this technology has broad applicability in nanoelectronics and nanofabrication. Nanostructured devices, rather than bulk materials, are the key to realizing economical, reliable, high-performance solar cells. Results will be arrays of discrete structures but the same technique are applicable to circuitry, sensors, optical applications, etc. This research is a key step in establishing a new low-cost, high-performance photovoltaic cell and enables new capabilities and performance in sensing devices.

P
PrimeStar Solar

Primestar Solar is a company that received a SBIR Phase I grant for a project entitled: High Quality, Low Cost, Polycrystalline CdS/CdTe Photovoltaic Cells. Their will develop new processes for producing lower cost and higher quality thin films from the compound semiconductors CdS and CdTe. These will be used to more inexpensively produce high performance photovoltaic modules that generate electricity from sunlight. Thin film CdTe-based photovoltaics currently require a post-deposition CdCl2 treatment and anneal to achieve reasonable performance. This anneal is known to increase the grain size in some films and increase the minority carrier lifetime in all CdTe films. The minority carrier lifetime is generally correlated with device efficiency in photovoltaic cells. However, the CdCl2 anneal cannot be optimized to maximize the minority carrier lifetime because attempts to do so have caused film delamination. Film delamination occurs due to strain induced during the anneal at the interface between the film and the glass substrate. This proposal seeks to develop a film deposition process that simultaneously avoids this problem and makes better quality films. This process will foster large grain growth, defect passivation, and grain boundary passivation while eliminating the need for a post-deposition CdCl2 treatment and anneal. This will result in higher efficiency solar cells and a streamlined production process. Commercially, solar photovoltaic modules are a silent, pollution free means to generate electricity from sunlight. Once the capital investment is made to install a photovoltaic electricity system, its operating cost is essentially zero because its "fuel", sunlight, is free. Photovoltaic electricity provides a means for homes to generate as much energy as they use over the course of a year. The production of photovoltaic modules has been increasing 20-30% annually for the past decade due to increases in efficiency and reductions in cost. However, for photovoltaics to achieve significant market penetration into mainstream electricity generation, this growth rate must be continued. This requires further increases in module efficiency and reductions in module cost. This research proposal addresses both of these issues. Successful development of this technology will ensure the marketplace success of CdTe photovoltaic modules, and pave the way for widespread stable-priced, sustainable, pollution-free electricity generation.

M
M V Systems

M V Systems is a company that received a SBIR Phase II grant for a project entitled: Fabrication of Low-bandgap Nano-crystalline SiGeC Thin Films Using the Plasma Enhanced Chemical Vapor Deposition (PECVD) Technique. Their their award is funded under the American Recovery and Reinvestment Act of 2009 project is to develop thin film tandem solar cells, comprising of nanocrystalline silicon and silicon carbon (nc-Si and nc-Si:C) absorber materials, with a conversion efficiency of ~20%. The phase I project successfully developed one of the key components, i.e. intrinsic nc-Si:C with a band gap, Eg, of ~ 1.5 eV and with good opto-electronic properties. This key material will be used initially in phase II to fabricate cells in a single junction configuration with an efficiency goal of ~10%. Previously, developed "device quality" nc-Si materials, with Eg ~1.1eV, were used to produce solar cells with efficiency ~8%. Integrating the two devices in a tandem junction configuration is forecast to yield efficiencies of ~18%. Further improvement in the tandem junction device efficiency,to ~20%, may be achieved via the use of buffer layers at the p/i or i/n interfaces and by increasing the grain size which would boost the open circuit voltage, Voc. Higher efficiency thin film tandem solar cells will be critical to achieving the low costs necessary to achieve widespread adoption of photovoltaic energy generating systems. M V Systems is a company that received a SBIR Phase I grant for a project entitled: Fabrication of low-bandgap nano-crystalline SiGeC thin films using the Plasma Enhanced Chemical Vapor Deposition (PECVD) technique. Their project will develop nanocrystalline SiGeC thin films with an optical bandgap (Eg) in the range of 1.6-1.8 eV, and enhanced absorption characteristics, leading to low-cost, high-efficiency (>20%) photovoltaic devices. Previous attempts at improving the photovoltaic efficiency have not been consistent and successful. The proposed approach uses plasma-enhanced chemical vapor deposition (PECVD) technique to deposit these films, which allows greater control of the process by being able to manipulate the plasma and electron temperatures to control the ion density in the plasma, with an independent control of the process parameters. This flexibility does not exist in the currently used techniques. With the proposed technique, stable and consistent films of SiGeC can be deposited on the desired substrate at moderate temperatures. If successfully developed, this technique could provide higher efficiency solar cells for the alternative energy market. The goal of highly stable films, high deposition efficiency and process scalability for large-scale manufacturing can only be achieved if the basic process can be proven. The broader impacts of this research will be in the low-cost photovoltaic (PV) devices for power generation market. If successfully completed, this research could lead to a strong partnership between solar cell manufacturers and equipment manufacturers, leading to a potentially lucrative photovoltaics market. Currently, electricity generated with available PV devices is 3-4 times more expensive as the conventional electricity. The selected materials (Si, Ge and C) for the thin film are abundantly available, which can significantly reduce the raw materials costs. A large body of basic knowledge of the requirements of solar electricity for the competitive market already exists, which makes the development of the process with a realistic performance target easy to achieve. The main challenge for achieving this goal lies in being able to control the deposition process to assure a stable and robust process, as the previous work has not been able to achieve consistent results. The initial target of producing a triple-junction thin-film solar cell is a worthy first product demonstration, which will prove the efficacy of the proposed technique, and attract third-party funding with little difficulty.

S
Silicon Photonics Group

Silicon Photonics Group is a company that received a STTR Phase I grant for a project entitled: Advanced Si-Ge-Sn-based Photonic Materials and Devices. Their research project aims to demonstrate prototype infrared light detectors and photovoltaic (solar cell) devices based on technology developed at Arizona State University. The new technology to be explored consists in growing optical-quality alloys of tin and germanium (Ge1-ySny) directly on silicon wafers. These alloys act as infrared materials, and they can also be used as templates for the subsequent growth of other semiconductors on silicon. Of particular interest for this project is the ternary alloy Ge1-x-ySixSny, grown for the first time at Arizona State University. Using this technology, it should be possible to build infrared detectors covering a spectral range previously inaccessible to silicon-based detectors, and to build multijunction photovoltaic devices for a more efficient capture of solar photons. The fabrication of semiconductor devices on cheap silicon wafers is of great significance because of the potentially enormous cost reductions and the possibility of integrating optoelectronic and microelectronic functions, which further reduces costs and contributes to system miniaturization. The infrared detectors proposed here cover the so-called telecom C-,L-, and U-bands within the wavelength window around 1500 nm, a region of great interest to the telecommunications industry. In the photovoltaics arena, the proposed devices have the potential to offer increased efficiencies to make crystalline silicon-based devices competitive with amorphous silicon solutions.

T
Tisol

Tisol is a company that received a SBIR Phase I grant for a project entitled: Scalable fabrication of mesoporous thin-films for production of efficient dye-sensitized solar cells. Their project aims to apply a specialized method to develop a rapid, large-scale and inexpensive thin film deposition technology. The goal is to enable the low-cost mass production and maintain the optimized nanostructures and film properties of efficient dye-sensitized solar cells. The broader societal/commercial impact of this project will be the potential to reduce production costs of materials used in dye-sensitized solar cells. Compared to other solar cell technologies, dye-sensitized solar cell technology has the potential of (1) low cost due to the abundance of elements that constitute the cell; (2) lightweight thus reduced installation cost and enhanced flexibility. However, recent advances in photovoltaics industry set a cost standard of < $1/Watt. If dye-sensitized solar cells were to be at par with current technologies on the market, the cost of thin film deposition has to be reduced. This project targets on the development of a high-throughput and large-scale thin film deposition process, which will make the solar electricity via dye-sensitized technology more cost-effective and thus more available.

Discover the right solution for your team

The CB Insights tech market intelligence platform analyzes millions of data points on vendors, products, partnerships, and patents to help your team find their next technology solution.

Request a demo

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.