Predict your next investment

Microwave Vision Group company logo
ELECTRONICS | Technical & Scientific Instrumentation

See what CB Insights has to offer

Founded Year



Take Private | Alive

About Microwave Vision Group

Microwave Vision (France) is a company that develops, manufactures and markets rapid electromagnetic field characterisation systems as well as related products (antennas, ground penetrating radar, etc.)

Microwave Vision Group Headquarter Location

47, boulevard Saint Michel

Paris, 75005,


Latest Microwave Vision Group News

Multi Probe Systems for Spherical Near Field Measurement and OTA Testing

Aug 13, 2021

August 13, 2021 Microwave Vision Group (MVG)  has introduced two multi-probe systems for spherical  near-field measurement  and OTA testing , particularly suited for large DUTs and high accuracy applications. In spherical near-field antenna measurements, the number of samples required for characterization is a function of the frequency and physical dimensions of the DUT (device under test). This number of samples must be consistent with the Nyquist criterion, which defines the spacing between measurement points (samples) on the minimum sphere surrounding the DUT at less than half a wavelength. This sets the minimum quantity of points to be measured. Only in this way will sampling in the near field be sufficient to fully process the far-field. In a spherical antenna measurement performed by a multi-probe test system, the DUT rotates in azimuth while the electromagnetic field surrounding the device is simultaneously scanned by the multi-probe array. The SG EVO is the latest MVG SG system integrating oversampling from the probe array. It is most suitable for heavy DUTs and high accuracy applications. The unlimited oversampling capabilities synchronized with the electronically scanned probe array of the SG Evo or SG 64 give fast and accurate antenna measurement results in minutes. It is designed for testing antennas and wireless devices. SG 64 has been developed to measure stand-alone antennas or antennas integrated with subsystems. It is also ideal for CTIA certi?able measurement facilities. The angular spacing between two probes of an array, for example, 5.29° for the MVG SG 64 , is suitable for small to medium-sized antenna testing at low frequencies. However, for large antennas and/or antennas operating at higher frequencies such as millimeter waves, more measurement points, or samples, are necessary to respect the Nyquist criterion. Oversampling creates additional virtual probes by a slight mechanical rotation in elevation of the DUT positioner or the probe array. Both oversampling techniques are applied using MVG patented technology. This rotation (± 2.6° max for the SG 64 ) plus an additional electronic scan of the probe array, introduce more data collection points, resulting in a complete view of the measurement sphere, and thus an accurate analysis capacity. Oversampling using the DUT positioner requires tilting the device around its phase center and functions well for relatively light and balanced devices. For large, heavy, or oblong antennas and/or operating in millimeter-wave frequencies, oversampling via an elevation rotation of the probe array ensures that the DUT does not experience gravitational deflection during the test. This provides the highest accuracy to meet optimal measurement performance.

Predict your next investment

The CB Insights tech market intelligence platform analyzes millions of data points on venture capital, startups, patents , partnerships and news mentions to help you see tomorrow's opportunities, today.

Microwave Vision Group Web Traffic

Page Views per User (PVPU)
Page Views per Million (PVPM)
Reach per Million (RPM)
CBI Logo

Microwave Vision Group Rank

CB Insights uses Cookies

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.