Predict your next investment

SOFTWARE (NON-INTERNET/MOBILE) | HR & Workforce Management Software
mensch.io

See what CB Insights has to offer

Stage

Acquired | Acquired

About Mensch

Mensch develops a Human Capital Management solution that unites HR with Finance and Management.On July 2, 2020, Mensche was acquired by Papaya Global. The terms of the transaction were not disclosed.

Mensch Headquarter Location

754 Moreno Ave

Palo Alto, California, 94303,

United States

Latest Mensch News

Q&A With Co-Creator of the 6502 Processor

Sep 16, 2021

Q&A With Co-Creator of the 6502 Processor Share Explore by topic Topics Support IEEE Spectrum IEEE Spectrum is the flagship publication of the IEEE — the world’s largest professional organization devoted to engineering and applied sciences. Our articles, podcasts, and infographics inform our readers about developments in technology, engineering, and science. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy. Saving articles to read later requires an IEEE Spectrum account The Institute content is only available for members Downloading full PDF issues is exclusive for IEEE Members Access to Spectrum's Digital Edition is exclusive for IEEE Members Following topics is a feature exclusive for IEEE Members Adding your response to an article requires an IEEE Spectrum account Create an account to access more content and features on IEEE Spectrum, including the ability to save articles to read later, download Spectrum Collections, and participate in conversations with readers and editors. For more exclusive content and features, consider Joining IEEE . Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, archives, PDF downloads, and other benefits. Learn more → Enjoy more free content and benefits by creating an account Create an account to access more content and features on IEEE Spectrum, including the ability to save articles to read later, download Spectrum Collections, and participate in conversations with readers and editors. For more exclusive content and features, consider Joining IEEE . Few people have seen their handiwork influence the world more than Bill Mensch. He helped create the legendary 8-bit 6502 microprocessor , launched in 1975, which was the heart of groundbreaking systems including the Atari 2600 , Apple II , and Commodore 64 . Mensch also created the VIA 65C22 input/output chip—noted for its rich features and which was crucial to the 6502's overall popularity—and the second-generation 65C816 , a 16-bit processor that powered machines such as the Apple IIGS , and the Super Nintendo console. Many of the 65x series of chips are still in production. The processors and their variants are used as microcontrollers in commercial products, and they remain popular among hobbyists who build home-brewed computers . The surge of interest in retrocomputing has led to folks once again swapping tips on how to write polished games using the 6502 assembly code, with new titles being released for the Atari , BBC Micro , and other machines. Mensch, an IEEE senior life member, splits his time between Arizona and Colorado, but folks in the Northeast of the United States will have the opportunity to see him as a keynote speaker at the Vintage Computer Festival in Wall, N.J., on the weekend of 8 October. In advance of Mensch's appearance, The Institute caught up with him via Zoom to talk about his career. This interview had been condensed and edited for clarity. The Institute: What drew you into engineering? Bill Mensch: I went to Temple University [in Philadelphia] on the recommendation of a guidance counselor. When I got there I found they only had an associate degree in engineering technology. But I didn't know what I was doing, so I thought: Let's finish up that associate degree. Then I got a job [in 1967] as a technician at [Pennsylvania TV maker] Philco-Ford and noticed that the engineers were making about twice as much money. I also noticed I was helping the engineers figure out what Motorola was doing in high-voltage circuits—which meant that Motorola was the leader and Philco was the follower. So I went to the University of Arizona, close to where Motorola was, got my engineering degree [in 1971] and went to work for Motorola. TI: How did you end up developing the 6502? BM: Chuck Peddle approached me. He arrived at Motorola two years after I started. Now, this has not been written up anywhere that I'm aware of, but I think his intention was to raid Motorola for engineers. He worked with me on the peripheral interface chip (PIA) and got to see me in action. He decided I was a young, egotistical engineer who was just the right kind to go with his ego. So Chuck and I formed a partnership of sorts. He was the system engineer, and I was the semiconductor engineer. We tried to start our own company [with some other Motorola engineers] and when that didn't happen, we joined an existing [semiconductor design] company, called MOS Technology, in Pennsylvania in 1974. That's where we created the 6501 and 6502 [in 1975], and I designed the input/output chips that went with it. The intention was to [develop a US $20 microprocessor to] compete with the Intel 4040 microcontroller chipset , which sold for about $29 at the time. We weren't trying to compete with the 6800 or the 8080 [chips designed for more complex microcomputer systems]. TI: The 6502 did become the basis of a lot of microcomputer systems, and if you look at contemporary programmer books , they often talk about the quirks of the 6502's architecture and instruction set compared with other processors. What drove those design decisions? BM: Rod Orgill and I had completed the designs of a few microprocessors before the 6501/6502. In other words, Rod and I already knew what was successful in an instruction set. And lower cost was key. So we looked at what instructions we really needed. And we figured out how to have addressable registers by using zero page [the first 256 bytes in RAM]. So you can have one byte for the op code and one byte for the address, and [the code is compact and fast]. There are limitations, but compared to other processors, zero page was a big deal. There is a love for this little processor that's undeniable. TI: A lot of pages in those programming books are devoted to explaining how to use the versatile interface adapter (VIA) chip and its two I/O ports, on-board timers, a serial shift register, and so on. Why so many features? BM: I had worked on the earlier PIA chip at Motorola. That meant I understood the needs of real systems in real-world implementations. [While working at MOS] Chuck, Wil Mathis, our applications guy, and I were eating at an Arby's one day, and we talked about doing something beyond the PIA. And they were saying, "We'd like to put a couple of timers on it. We'd like a serial port," and I said, "Okay, we're going to need more register select lines." And our notes are on an Arby's napkin. And I went off and designed it. Then I had to redesign it to make it more compatible with the PIA. I also made a few changes at Apple 's request. What's interesting about the VIA is that it's the most popular chip we sell today. I'm finding out more and more about how it was used in different applications. TI: After MOS Technology, in 1978 you founded The Western Design Center, where you created the 65C816 CPU. The creators of the ARM processor credit a visit to WDC as giving them the confidence to design their own chip. Do you remember that visit? BM: Vividly! Sophie Wilson and Steve Furber visited me and talked to me about developing a 32-bit chip. They wanted to leapfrog what Apple was rumored to be up to. But I was just finishing up the '816, and I didn't want to change horses. So when they [had success with the ARM ] I was cheering them on because it wasn't something I wanted to do. But I did leave them with the idea of, "Look, if I can do it here … there are two of you; there's one of me." TI: The 6502 and '816 are often found today in other forms , either as the physical core of a system-on-a-chip, or running on an FPGA . What are some of the latest developments? BM: I'm excited about what's going on right now. It's more exciting than ever. I was just given these flexible 6502s printed with thin films by PragmatIC ! Our chips are in IoT devices, and we have new educational boards coming out. TI: Why do you think the original 65x series is still popular, especially among people building their own personal computers ? BM: There is a love for this little processor that's undeniable. And the reason is we packed it with love while we were designing it. We knew what we were doing. Rod and I knew from our previous experience with the Olivetti CPU and other chips. And from my work with I/O chips, I knew [how computers were used] in the real world. People want to work with the 65x chips because they are accessible. You can trust the technology. From Your Site Articles Stephen Cass is the special projects editor at IEEE Spectrum. He currently helms Spectrum's Hands On column, and is also responsible for interactive projects such as the Top Programming Languages app. He has a bachelor's degree in experimental physics from Trinity College Dublin. The Conversation (0) Get unlimited IEEE Spectrum access Become an IEEE member and get exclusive access to more stories and resources, including our vast article archive and full PDF downloads Network with other technology professionals Establish a professional profile Discover IEEE events and activities Join and participate in discussions Kate Murphy Blue As we confront the enormous challenge of climate change, we should take inspiration from even the most unlikely sources. Take, for example, the tens of thousands of fossil-fueled ships that chug across the ocean, spewing plumes of pollutants that contribute to acid rain, ozone depletion, respiratory ailments, and global warming. The particles produced by these ship emissions can also create brighter clouds, which in turn can produce a cooling effect via processes that occur naturally in our atmosphere. What if we could achieve this cooling effect without simultaneously releasing the greenhouse gases and toxic pollutants that ships emit? That's the question the Marine Cloud Brightening (MCB) Project intends to answer. Scientists have known for decades that the particulate emissions from ships can have a dramatic effect on low-lying stratocumulus clouds above the ocean. In satellite images, parts of the Earth's oceans are streaked with bright white strips of clouds that correspond to shipping lanes. These artificially brightened clouds are a result of the tiny particles produced by the ships, and they reflect more sunlight back to space than unperturbed clouds do, and much more than the dark blue ocean underneath. Since these "ship tracks" block some of the sun's energy from reaching Earth's surface, they prevent some of the warming that would otherwise occur. The formation of ship tracks is governed by the same basic principles behind all cloud formation. Clouds naturally appear when the relative humidity exceeds 100 percent, initiating condensation in the atmosphere. Individual cloud droplets form around microscopic particles called cloud condensation nuclei (CCN). Generally speaking, an increase in CCN increases the number of cloud droplets while reducing their size. Through a phenomenon known as the Twomey effect , this high concentration of droplets boosts the clouds' reflectivity (also called albedo ). Sources of CCN include aerosols like dust, pollen, soot, and even bacteria, along with man-made pollution from factories and ships. Over remote parts of the ocean, most CCN are of natural origin and include sea salt from crashing ocean waves. Satellite imagery shows "ship tracks" over the ocean: bright clouds that form because of particles spewed out by ships. Jeff Schmaltz/MODIS Rapid Response Team/GSFC/NASA The aim of the MCB Project is to consider whether deliberately adding more sea salt CCN to low marine clouds would cool the planet. The CCN would be generated by spraying seawater from ships. We expect that the sprayed seawater would instantly dry in the air and form tiny particles of salt, which would rise to the cloud layer via convection and act as seeds for cloud droplets. These generated particles would be much smaller than the particles from crashing waves, so there would be only a small relative increase in sea salt mass in the atmosphere. The goal would be to produce clouds that are slightly brighter (by 5 to 10 percent) and possibly longer lasting than typical clouds, resulting in more sunlight being reflected back to space. " Solar climate intervention " is the umbrella term for projects such as ours that involve reflecting sunlight to reduce global warming and its most dangerous impacts. Other proposals include sprinkling reflective silicate beads over polar ice sheets and injecting materials with reflective properties, such as sulfates or calcium carbonate, into the stratosphere. None of the approaches in this young field are well understood, and they all carry potentially large unknown risks. Solar climate intervention is not a replacement for reducing greenhouse gas emissions, which is imperative. But such reductions won't address warming from existing greenhouse gases that are already in the atmosphere. As the effects of climate change intensify and tipping points are reached, we may need options to prevent the most catastrophic consequences to ecosystems and human life. And we'll need a clear understanding of both the efficacy and risks of solar climate intervention technologies so people can make informed decisions about whether to implement them. Our team, based at the University of Washington , the Palo Alto Research Center (PARC), and the Pacific Northwest National Laboratory , comprises experts in climate modeling, aerosol-cloud interactions, fluid dynamics, and spray systems. We see several key advantages to marine cloud brightening over other proposed forms of solar climate intervention. Using seawater to generate the particles gives us a free, abundant source of environmentally benign material, most of which would be returned to the ocean through deposition. Also, MCB could be done from sea level and wouldn't rely on aircraft, so costs and associated emissions would be relatively low. The effects of particles on clouds are temporary and localized, so experiments on MCB could be carried out over small areas and brief time periods (maybe spraying for a few hours per day over several weeks or months) without seriously perturbing the environment or global climate. These small studies would still yield significant information on the impacts of brightening. What's more, we can quickly halt the use of MCB, with very rapid cessation of its effects. Solar climate intervention is the umbrella term for projects that involve reflecting sunlight to reduce global warming and its most dangerous impacts. Our project encompasses three critical areas of research. First, we need to find out if we can reliably and predictably increase reflectivity. To this end, we'll need to quantify how the addition of generated sea salt particles changes the number of droplets in these clouds, and study how clouds behave when they have more droplets. Depending on atmospheric conditions, MCB could affect things like cloud droplet evaporation rate, the likelihood of precipitation, and cloud lifetime. Quantifying such effects will require both simulations and field experiments. Second, we need more modeling to understand how MCB would affect weather and climate both locally and globally. It will be crucial to study any negative unintended consequences using accurate simulations before anyone considers implementation. Our team is initially focusing on modeling how clouds respond to additional CCN. At some point we'll have to check our work with small-scale field studies, which will in turn improve the regional and global simulations we'll run to understand the potential impacts of MCB under different climate change scenarios. The third critical area of research is the development of a spray system that can produce the size and concentration of particles needed for the first small-scale field experiments. We'll explain below how we're tackling that challenge. One of the first steps in our project was to identify the clouds most amenable to brightening. Through modeling and observational studies, we determined that the best target is stratocumulus clouds , which are low altitude (around 1 to 2 km) and shallow; we're particularly interested in "clean" stratocumulus, which have low numbers of CCN. The increase in cloud albedo with the addition of CCN is generally strong in these clouds, whereas in deeper and more highly convective clouds other processes determine their brightness. Clouds over the ocean tend to be clean stratocumulus clouds, which is fortunate, because brightening clouds over dark surfaces, such as the ocean, will yield the highest albedo change. They're also conveniently close to the liquid we want to spray. In the phenomenon called the Twomey effect, clouds with higher concentrations of small particles have a higher albedo, meaning they're more reflective. Such clouds might be less likely to produce rain, and the retained cloud water would keep albedo high. On the other hand, if dry air from above the cloud mixes in (entrainment), the cloud may produce rain and have a lower albedo. The full impact of MCB will be the combination of the Twomey effect and these cloud adjustments. Rob Wood Based on our cloud type, we can estimate the number of particles to generate to see a measurable change in albedo. Our calculation involves the typical aerosol concentrations in clean marine stratocumulus clouds and the increase in CCN concentration needed to optimize the cloud brightening effect, which we estimate at 300 to 400 per cubic centimeter. We also take into account the dynamics of this part of the atmosphere, called the marine boundary layer, considering both the layer's depth and the roughly three-day lifespan of particles within it. Given all those factors, we estimate that a single spray system would need to continuously deliver approximately 3x10 15 particles per second to a cloud layer that covers about 2,000 square kilometers. Since it's likely that not every particle will reach the clouds, we should aim for an order or two greater. We can also determine the ideal particle size based on initial cloud modeling studies and efficiency considerations. These studies indicate that the spray system needs to generate seawater droplets that will dry to salt crystals of just 30–100 nanometers in diameter. Any smaller than that and the particles will not act as CCN. Particles larger than a couple hundred nanometers are still effective, but their larger mass means that energy is wasted in creating them. And particles that are significantly larger than several hundred nanometers can have a negative effect, since they can trigger rainfall that results in cloud loss. We need a clear understanding of both the efficacy and risks of solar climate intervention technologies so people can make informed decisions about whether to implement them. Creating dry salt crystals of the optimal size requires spraying seawater droplets of 120–400 nm in diameter, which is surprisingly difficult to do in an energy-efficient way. Conventional spray nozzles, where water is forced through a narrow orifice, produce mists with diameters from tens of micrometers to several millimeters. To decrease the droplet size by a factor of ten, the pressure through the nozzle must increase more than 2,000 times. Other atomizers, like the ultrasonic nebulizers found in home humidifiers, similarly cannot produce small enough droplets without extremely high frequencies and power requirements. Solving this problem required both out-of-the-box thinking and expertise in the production of small particles. That's where Armand Neukermans came in. Kate Murphy leads the engineering effort for the MCB project at PARC, the Xerox research lab in Silicon Valley. Christopher Michel Armand Neukermans brought his expertise in ink jet printers to bear on the quest to make nozzles that could efficiently and reliably spray tiny droplets of seawater. Christopher Michel After a distinguished career at HP and Xerox focused on production of toner particles and ink jet printers, in 2009 Neukermans was approached by several eminent climate scientists, who asked him to turn his expertise toward making seawater droplets. He quickly assembled a cadre of volunteers—mostly retired engineers and scientists . and over the next decade, these self-designated "Old Salts" tackled the challenge. They worked in a borrowed Silicon Valley laboratory, using equipment scrounged from their garages or purchased out of their own pockets. They explored several ways of producing the desired particle size distributions with various tradeoffs between particle size, energy efficiency, technical complexity, reliability, and cost. In 2019 they moved into a lab space at PARC, where they have access to equipment, materials, facilities, and more scientists with expertise in aerosols, fluid dynamics, microfabrication, and electronics. The three most promising techniques identified by the team were effervescent spray nozzles, spraying salt water under supercritical conditions, and electrospraying to form Taylor cones (which we'll explain later). The first option was deemed the easiest to scale up quickly, so the team moved forward with it. In an effervescent nozzle, pressurized air and salt water are pumped into a single channel, where the air flows through the center and the water swirls around the sides. When the mixture exits the nozzle, it produces droplets with sizes ranging from tens of nanometers to a few micrometers, with the overwhelming number of particles in our desired size range. Effervescent nozzles are used in a range of applications, including engines, gas turbines, and spray coatings. The key to this technology lies in the compressibility of air. As a gas flows through a constricted space, its velocity increases as the ratio of the upstream to downstream pressures increases. This relationship holds until the gas velocity reaches the speed of sound. As the compressed air leaves the nozzle at sonic speeds and enters the environment, which is at much lower pressure, the air undergoes a rapid radial expansion that explodes the surrounding ring of water into tiny droplets. Coauthor Gary Cooper and intern Jessica Medrado test the effervescent nozzle inside the tent. Kate Murphy Neukermans and company found that the effervescent nozzle works well enough for small-scale testing, but the efficiency—the energy required per correctly sized droplet—still needs to be improved. The two biggest sources of waste in our system are the large amounts of compressed air needed and the large fraction of droplets that are too big. Our latest efforts have focused on redesigning the flow paths in the nozzle to require smaller volumes of air. We're also working to filter out the large droplets that could trigger rainfall. And to improve the distribution of droplet size, we're considering ways to add charge to the droplets; the repulsion between charged droplets would inhibit coalescence, decreasing the number of oversized droplets. Though we're making progress with the effervescent nozzle, it never hurts to have a backup plan. And so we're also exploring electrospray technology, which could yield a spray in which almost 100 percent of the droplets are within the desired size range. In this technique, seawater is fed through an emitter—a narrow orifice or capillary—while an extractor creates a large electric field. If the electrical force is of similar magnitude to the surface tension of the water, the liquid deforms into a cone, typically referred to as a Taylor cone . Over some threshold voltage, the cone tip emits a jet that quickly breaks up into highly charged droplets. The droplets divide until they reach their Rayleigh limit , the point where charge repulsion balances the surface tension. Fortuitously, surface seawater's typical conductivity (4 Siemens per meter) and surface tension (73 millinewtons per meter) yield droplets in our desired size range. The final droplet size can even be tuned via the electric field down to tens of nanometers, with a tighter size distribution than we get from mechanical nozzles. This diagram (not to scale) depicts the electrospray system, which uses an electric field to create cones of water that break up into tiny droplets. Kate Murphy Electrospray is relatively simple to demonstrate with a single emitter-extractor pair, but one emitter only produces 10 7–109 droplets per second, whereas we need 1016–1017 per second. Producing that amount requires an array of up to 100,000 by 100,000 capillaries. Building such an array is no small feat. We're relying on techniques more commonly associated with cloud computing than actual clouds. Using the same lithography, etch, and deposition techniques used to make integrated circuits, we can fabricate large arrays of tiny capillaries with aligned extractors and precisely placed electrodes. Images taken by a scanning electron microscope show the capillary emitters used in the electrospray system. Kate Murphy Testing our technologies presents yet another set of challenges. Ideally, we would like to know the initial size distribution of the saltwater droplets. In practice, that's nearly impossible to measure. Most of our droplets are smaller than the wavelength of light, precluding non-contact measurements based on light scattering. Instead, we must measure particle sizes downstream, after the plume has evolved. Our primary tool, called a scanning electrical mobility spectrometer , measures the mobility of charged dry particles in an electrical field to determine their diameter. But that method is sensitive to factors like the room's size and air currents and whether the particles collide with objects in the room. To address these problems, we built a sealed 425 cubic meter tent, equipped with dehumidifiers, fans, filters, and an array of connected sensors. Working in the tent allows us to spray for longer periods of time and with multiple nozzles, without the particle concentration or humidity becoming higher than what we would see in the field. We can also study how the spray plumes from multiple nozzles interact and evolve over time. What's more, we can more precisely mimic conditions over the ocean and tune parameters such as air speed and humidity. Part of the team inside the test tent; from left, "Old Salts" Lee Galbraith and Gary Cooper, Kate Murphy of PARC, and intern Jessica Medrado. Kate Murphy We'll eventually outgrow the tent and have to move to a large indoor space to continue our testing. The next step will be outdoor testing to study plume behavior in real conditions, though not at a high enough rate that we would measurably perturb the clouds. We'd like to measure particle size and concentrations far downstream of our sprayer, from hundreds of meters to several kilometers, to determine if the particles lift or sink and how far they spread. Such experiments will help us optimize our technology, answering such questions as whether we need to add heat to our system to encourage the particles to rise to the cloud layer. The data obtained in these preliminary tests will also inform our models. And if the results of the model studies are promising, we can proceed to field experiments in which clouds are brightened sufficiently to study key processes. As discussed above, such experiments would be performed over a small and short time so that any effects on climate wouldn't be significant. These experiments would provide a critical check of our simulations, and therefore of our ability to accurately predict the impacts of MCB. It's still unclear whether MCB could help society avoid the worst impacts of climate change, or whether it's too risky, or not effective enough to be useful. At this point, we don't know enough to advocate for its implementation, and we're definitely not suggesting it as an alternative to reducing emissions. The intent of our research is to provide policymakers and society with the data needed to assess MCB as one approach to slow warming, providing information on both its potential and risks. To this end, we've submitted our experimental plans for review by the U.S. National Oceanic and Atmospheric Administration and for open publication as part of a U.S. National Academy of Sciences study of research in the field of solar climate intervention. We hope that we can shed light on the feasibility of MCB as a tool to make the planet safer. From Your Site Articles

Predict your next investment

The CB Insights tech market intelligence platform analyzes millions of data points on venture capital, startups, patents , partnerships and news mentions to help you see tomorrow's opportunities, today.

CB Insights uses Cookies

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.