Search company, investor...
Search

The profile is currenly unclaimed by the seller. All information is provided by CB Insights.

lightwavepower.com

Founded Year

2008

Stage

Series A | Alive

Total Raised

$13M

Last Raised

$13M | 14 yrs ago

About Lightwave Power

Lightwave Power, Inc. is developing solar energy products based on nanoarrays and 2-dimensional photonic crystal arrays. The company's technology pathway includes the development of large area thin sheets of repeating nano- and micro-sized structures that can be designed to absorb, convert, re-emit and guide light. These structures are very thin, are generally fashioned out of common metals and dielectrics and manufactured on flexible substrates using a roll-to-roll process, leading to low manufacturing cost projections. The company's products are being designed to solve the important problem that current solar electric products are too costly for many applications. Lightwave Power filed its first solar energy patent in March 2008. Lightwave Power currently is co-located with MicroContinuum, Inc. in Cambridge, MA.

Lightwave Power Headquarters Location

57 Smith Place

Cambridge, Massachusetts, 02138,

United States

617-354-5684

Predict your next investment

The CB Insights tech market intelligence platform analyzes millions of data points on venture capital, startups, patents , partnerships and news mentions to help you see tomorrow's opportunities, today.

Expert Collections containing Lightwave Power

Expert Collections are analyst-curated lists that highlight the companies you need to know in the most important technology spaces.

Lightwave Power is included in 1 Expert Collection, including Renewable Energy.

R

Renewable Energy

3,962 items

This collection contains upstream and downstream solar companies, as well as those who manufacture and sell products that are powered by solar technology.

  • When was Lightwave Power founded?

    Lightwave Power was founded in 2008.

  • Where is Lightwave Power's headquarters?

    Lightwave Power's headquarters is located at 57 Smith Place, Cambridge.

  • What is Lightwave Power's latest funding round?

    Lightwave Power's latest funding round is Series A.

  • How much did Lightwave Power raise?

    Lightwave Power raised a total of $13M.

  • Who are the investors of Lightwave Power?

    Investors of Lightwave Power include Quercus Trust and 21Ventures.

  • Who are Lightwave Power's competitors?

    Competitors of Lightwave Power include Xantrex Technology, Accustrata, FTL Solar, Jem Enterprises, Meridian Deployment Corporation and 13 more.

You May Also Like

T
Tisol

Tisol is a company that received a SBIR Phase I grant for a project entitled: Scalable fabrication of mesoporous thin-films for production of efficient dye-sensitized solar cells. Their project aims to apply a specialized method to develop a rapid, large-scale and inexpensive thin film deposition technology. The goal is to enable the low-cost mass production and maintain the optimized nanostructures and film properties of efficient dye-sensitized solar cells. The broader societal/commercial impact of this project will be the potential to reduce production costs of materials used in dye-sensitized solar cells. Compared to other solar cell technologies, dye-sensitized solar cell technology has the potential of (1) low cost due to the abundance of elements that constitute the cell; (2) lightweight thus reduced installation cost and enhanced flexibility. However, recent advances in photovoltaics industry set a cost standard of < $1/Watt. If dye-sensitized solar cells were to be at par with current technologies on the market, the cost of thin film deposition has to be reduced. This project targets on the development of a high-throughput and large-scale thin film deposition process, which will make the solar electricity via dye-sensitized technology more cost-effective and thus more available.

P
PrimeStar Solar

Primestar Solar is a company that received a SBIR Phase I grant for a project entitled: High Quality, Low Cost, Polycrystalline CdS/CdTe Photovoltaic Cells. Their will develop new processes for producing lower cost and higher quality thin films from the compound semiconductors CdS and CdTe. These will be used to more inexpensively produce high performance photovoltaic modules that generate electricity from sunlight. Thin film CdTe-based photovoltaics currently require a post-deposition CdCl2 treatment and anneal to achieve reasonable performance. This anneal is known to increase the grain size in some films and increase the minority carrier lifetime in all CdTe films. The minority carrier lifetime is generally correlated with device efficiency in photovoltaic cells. However, the CdCl2 anneal cannot be optimized to maximize the minority carrier lifetime because attempts to do so have caused film delamination. Film delamination occurs due to strain induced during the anneal at the interface between the film and the glass substrate. This proposal seeks to develop a film deposition process that simultaneously avoids this problem and makes better quality films. This process will foster large grain growth, defect passivation, and grain boundary passivation while eliminating the need for a post-deposition CdCl2 treatment and anneal. This will result in higher efficiency solar cells and a streamlined production process. Commercially, solar photovoltaic modules are a silent, pollution free means to generate electricity from sunlight. Once the capital investment is made to install a photovoltaic electricity system, its operating cost is essentially zero because its "fuel", sunlight, is free. Photovoltaic electricity provides a means for homes to generate as much energy as they use over the course of a year. The production of photovoltaic modules has been increasing 20-30% annually for the past decade due to increases in efficiency and reductions in cost. However, for photovoltaics to achieve significant market penetration into mainstream electricity generation, this growth rate must be continued. This requires further increases in module efficiency and reductions in module cost. This research proposal addresses both of these issues. Successful development of this technology will ensure the marketplace success of CdTe photovoltaic modules, and pave the way for widespread stable-priced, sustainable, pollution-free electricity generation.

A
Anteos

Anteos is a company that received a SBIR Phase II grant for a project entitled: Relief-Free Infrared Diffractive Optics Based on Semiconductor Materials. Their award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5) and their project will develop a new generation of relief-free thin-plate components of diffractive optics operating in the infrared region of spectrum. The diffractive optics employs volume phase holographic structures, which are optically recorded in semiconductor materials transparent at the infrared wavelengths using proprietary process of photo-modification for producing dramatic change of the material refractive index under illumination with low intensity light. Phase I of this project proved feasibility of the proposed concept by demonstrating photo modification of ZnSe infrared material and fabricating the first model components. The developed technology can be immediately applied to fabrication of diffractive optics, volume phase holographic gratings, and phase retardation plates for wavelengths up to 1.9 m, as well as antireflection layers for wavelengths up to 8 m. In Phase II project the technology will be optimized and applied to fabrication of the prototype components of infrared diffractive optics operating at longer wavelengths, including the important wavelength of CO2 laser 10.6 m and windows of atmospheric transparency 3-5 and 8-12 m. The developed photo-modification process is highly adaptable and creates a rich technology platform for fabrication of a broad range of products for a large variety of markets. Successful implementation of this technology will result in a new generation of high efficiency relief-free infrared diffractive optics and sub-wavelength components, including diffraction gratings, beam splitters, beam shapers, semiconductor materials with artificial birefringence, phase retardation plates and wave plates. The relief-free components of infrared diffractive optics based on semiconductor materials are capable to withstand high light intensities and perform complicated light management functions. Another important application is the fabrication of highly stable anti-reflection (AR) layers on infrared semiconductor optics. The market for infrared diffractive optics includes defense and airspace industry, laser industry, spectral devices, sensors and detectors, night vision optics, industrial process control, material processing, cutting and welding, environmental monitoring, medical diagnostics and surgery. Anteos is a company that received a SBIR Phase II grant for a project entitled: High-Efficiency Nanocomposite Photovoltaics and Solar Cells. Their project is focused on development of an innovative technology for fabrication of high-efficiency thin film nanocomposite photovoltaic materials and solar cells taking advantage of the recently discovered effect of carrier multiplication in semiconductor nanocrystals. The proposed concept employs smart design of the solar cells providing fast and effective spatial separation of electrons and holes photo-generated in the nanocrystals. The proposed reach nanotechnology platform solves the challenging problem of electrical communications with nanoscale objects, such as nanocrystals, nanorods, nanowires, nanotubes, etc. It can be employed for development of many other nanocomposite optoelectronic devices having numerous commercial and military applications. If successful the development of new generation of high-efficiency photovoltaic materials and solar cells based on the demonstrated technology will have broad impact on the entire solar energy industry resulting in considerable energy savings and environmental protection. The technology has great commercialization potential and niche market. The proposed all-inorganic, high-efficiency, thin film, flexible nanostructured photovoltaic materials and solar cells, which can operate in extreme environment conditions and offer significant mass and volume savings, are ideally suitable for numerous applications, including power generating residential rooftops, power supplies for utility grid, emergency signals and telephones, water pumps, activate switches, battery chargers, residential and commercial lighting, etc.

J
Jem Enterprises

Jem Enterprises is a company that received a SBIR Phase I grant for a project entitled: Tin(II) Sulfide Photovoltaics. Their project aims to develop photovoltaic devices based on tin (II) sulfide (SnS). The properties of SnS, including bandgaps, carrier density and mobility, chemical and thermal stability, and metallurgical properties, promise the possibility to achieve relatively high conversion efficiency given state-of-art process control and device design. In this project, close space sublimation (CSS) technique, a thin film fabrication method proven for low cost and high manufacturability, will be used to synthesize SnS. The broader/commercial impact of this project will be the potential to produce photovoltaic devices based on low-cost and environmentally-friendly materials. There is no doubt that solar electricity has attracted a lot of attention in recent years as an alternative and renewable energy source. However, most of the current solar cell technologies have one or more of the following issues that, (1) raw materials are not abundantly available; (2) toxic materials are used; (3) overall cost is high. This project will address these issues by developing photovoltaic devices using SnS, a semiconductor material that can be supplied on a massive scale and at low recovery costs.

M
M V Systems

M V Systems is a company that received a SBIR Phase II grant for a project entitled: Fabrication of Low-bandgap Nano-crystalline SiGeC Thin Films Using the Plasma Enhanced Chemical Vapor Deposition (PECVD) Technique. Their their award is funded under the American Recovery and Reinvestment Act of 2009 project is to develop thin film tandem solar cells, comprising of nanocrystalline silicon and silicon carbon (nc-Si and nc-Si:C) absorber materials, with a conversion efficiency of ~20%. The phase I project successfully developed one of the key components, i.e. intrinsic nc-Si:C with a band gap, Eg, of ~ 1.5 eV and with good opto-electronic properties. This key material will be used initially in phase II to fabricate cells in a single junction configuration with an efficiency goal of ~10%. Previously, developed "device quality" nc-Si materials, with Eg ~1.1eV, were used to produce solar cells with efficiency ~8%. Integrating the two devices in a tandem junction configuration is forecast to yield efficiencies of ~18%. Further improvement in the tandem junction device efficiency,to ~20%, may be achieved via the use of buffer layers at the p/i or i/n interfaces and by increasing the grain size which would boost the open circuit voltage, Voc. Higher efficiency thin film tandem solar cells will be critical to achieving the low costs necessary to achieve widespread adoption of photovoltaic energy generating systems. M V Systems is a company that received a SBIR Phase I grant for a project entitled: Fabrication of low-bandgap nano-crystalline SiGeC thin films using the Plasma Enhanced Chemical Vapor Deposition (PECVD) technique. Their project will develop nanocrystalline SiGeC thin films with an optical bandgap (Eg) in the range of 1.6-1.8 eV, and enhanced absorption characteristics, leading to low-cost, high-efficiency (>20%) photovoltaic devices. Previous attempts at improving the photovoltaic efficiency have not been consistent and successful. The proposed approach uses plasma-enhanced chemical vapor deposition (PECVD) technique to deposit these films, which allows greater control of the process by being able to manipulate the plasma and electron temperatures to control the ion density in the plasma, with an independent control of the process parameters. This flexibility does not exist in the currently used techniques. With the proposed technique, stable and consistent films of SiGeC can be deposited on the desired substrate at moderate temperatures. If successfully developed, this technique could provide higher efficiency solar cells for the alternative energy market. The goal of highly stable films, high deposition efficiency and process scalability for large-scale manufacturing can only be achieved if the basic process can be proven. The broader impacts of this research will be in the low-cost photovoltaic (PV) devices for power generation market. If successfully completed, this research could lead to a strong partnership between solar cell manufacturers and equipment manufacturers, leading to a potentially lucrative photovoltaics market. Currently, electricity generated with available PV devices is 3-4 times more expensive as the conventional electricity. The selected materials (Si, Ge and C) for the thin film are abundantly available, which can significantly reduce the raw materials costs. A large body of basic knowledge of the requirements of solar electricity for the competitive market already exists, which makes the development of the process with a realistic performance target easy to achieve. The main challenge for achieving this goal lies in being able to control the deposition process to assure a stable and robust process, as the previous work has not been able to achieve consistent results. The initial target of producing a triple-junction thin-film solar cell is a worthy first product demonstration, which will prove the efficacy of the proposed technique, and attract third-party funding with little difficulty.

A
AOS Solar

AOS Solar was started in 2005 to combine the material cost and manufacturing process economics of thin film solar PV with the efficiency and reliability of crystalline silicon solar PV. The company have an initial prototype solar coupon built and tested using technology. nnThe company's key enablers to achieve market traction are the cost and reliability of the company's product. The silicon on glass (SOG) technology the company are developing will enable solar panels costing around $1/watt to manufacture on the company's pilot line, with lower costs as the company ramp up production due to manufacturing efficiencies and learning curve. Solar silicon is an established technology with proven 20+ year life (versus newer thin film technologies). nnToday the company have working coupons at 7.5% efficiency and the company are working to scale up to larger cells with target 9% efficiency in Q-1, 2008. The company's form factor and efficiency limits are based on first generation technology. By scaling the company's manufacturing and improving the company's technology the company expect to achieve 16 - 18% efficiency in a single junction and 22 - 24% efficiency in a double junction module. nnThe company's A round funding will be used to continue development of the company's equipment / process technology in order to manufacture on larger substrates (2.5' x 4' glass) and to design a scaled up manufacturing line (30+MW annual capacity) based on this development.

Discover the right solution for your team

The CB Insights tech market intelligence platform analyzes millions of data points on vendors, products, partnerships, and patents to help your team find their next technology solution.

Request a demo

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.