Search company, investor...

Founded Year

1969

Stage

Acq - Fin - II | Alive

Revenue

$0000 

About Jostens Learning

Jostens Learning provides educational software and services to the K-12 school market. The company offers an online curriculum for reading and language arts, writing, mathematics, science, social studies, and english. It primarily serves the education and training sector. The company was founded in 1969 and is based in Austin, Texas.

Headquarters Location

6170 Cornerstone Court East

Austin, Texas, 92121,

United States

Loading...

Loading...

Jostens Learning Frequently Asked Questions (FAQ)

  • When was Jostens Learning founded?

    Jostens Learning was founded in 1969.

  • Where is Jostens Learning's headquarters?

    Jostens Learning's headquarters is located at 6170 Cornerstone Court East, Austin.

  • What is Jostens Learning's latest funding round?

    Jostens Learning's latest funding round is Acq - Fin - II.

  • Who are the investors of Jostens Learning?

    Investors of Jostens Learning include Ripplewood Holdings, Sylvan Learning and Bain Capital.

  • Who are Jostens Learning's competitors?

    Competitors of Jostens Learning include Infobase and 4 more.

Loading...

Compare Jostens Learning to Competitors

W
Wowiwe Instruction

Wowiwe Instruction is a company that received a SBIR Phase I grant for a project entitled: An Environmental Geology Game for Discovery-oriented Science and Mathematics Education. Their research project aims to solve a growing need for environmental science education. The project focusses on the development of a dynamic, group-based, immersive virtual environment (IVE). The primary innovation of the project lies at the intersection of three fruitful lines of research. First, IVEs show improved learning gains in science classrooms. Second, group learning is increasingly important, both from an employer's viewpoint and an educator's viewpoint. Finally, the fast-paced, immediate nature of our society requires individuals to respond quickly and effectively to dynamic events. The combination of these three will lead to a new, and potentially more intrinsically motivating, method of teaching environmental science. A study will be performed to determine the efficacy of the approach in terms of both learning outcomes and attitudinal measures, using high school students in a controlled laboratory setting. The 'degree of casual adoption' among high school students will be assessed through the 'landing site' developed for a related project. At the conclusion of the project, the IVE will be a fully-contained experimentally validated software package feasible for Phase II distribution to a number of markets. In the recent OECD international study of developed countries, the US ranked 21st in the percentage of the population with a high proficiency of environmental science skills and knowledge. This presents a marketable need for experimentally validated pedagogical software solutions that align with state and national standards. Meanwhile, environmental issues are reaching the forefront of national thought. This provides unique commercial opportunities for environmentally focused IVE software. Key players in the market include educational publishers and software developers. Competing technology is mainly non-immersive video clips, simple one-off activities, or in the best case, static games with a single outcome. Our solution is better than products developed by these companies because it leads the way by bringing three emerging technologies to bear on an environmental science curriculum. This project is tailored to take advantage of the One-to-One Initiative arising in states such as Michigan and Maine, through a combination of exit screens and landing sites with potential to be accessed by thousands of students per year. The software developed from this project will be purchased by high school students interested in environmental science and 'green' issues currently topical, and by parents interested in providing their children a more complete and socially relevant science education.

I
Infobase

Infobase is a company that focuses on providing educational content and learning tools, operating in the education technology sector. The company offers a range of online curriculum-based resources for instructors and students, including research databases, video collections, eBook collections, and courseware, which can be integrated into various learning management systems for efficient researching and course creation. Infobase primarily serves K-12 schools and districts, higher education institutions, public libraries, and corporations. It was founded in 1941 and is based in New York, New York.

W
WorldLink Media

WorldLink Media is a company that received a SBIR Phase II grant for a project entitled: Interactive Earth. Their project proposes to research and develop ways to increase accessibility and utilization of Earth systems science data and visualizations for secondary school teachers and students. The commercial product will consist of a DVDROM, curriculum, and web site. Building on WorldLink Media, Inc.'s previously published CD product, Interactive Earth, the firm will develop an integrated tool set for data display and image interpretation that will enable students to inquire, hypothesize, analyze, discover, and communicate with peers-replicating the work of real scientists. Much more than a static software program, the Interactive Earth DVD-ROM will be part of a "learning platform" that includes an in-depth curriculum package, access to a rich archive of global data via the web, and professional development opportunities. Partnerships with NASA's Earth Observatory web site and the World Resources Institute's EarthTrends project will enable classroom access to extensive global data sets and visualizations. TERC, a research and education organization, will develop a curriculum that aligns with the National Science Education Standards. This SBIR project recognizes the vital interplay between a curriculum developer (TERC), data providers (NASA and World Resources Institute), and a media designer and tool-builder (WorldLink) in creating exemplary learning materials. Earth science is of national strategic importance as a field of research and innovation. The potential contribution to our schools and students is not just in Earth systems science, but in the broader applicability of the skills developed by students to related domains of science, math, geography, and other fields. These thinking skills include inquiry, visual literacy, understanding systems and models, and the ability to apply knowledge and problem solving to a range of real-world issues.

J
JourneyEd

JourneyEd operates as an education tech store. The company offers a range of education-priced products for school technology buyers, also software, hardware, and network solutions. It was founded in 1990 and is based in Allen, Texas.

V
VisTrails

VisTrails, Inc. is a Salt Lake City, UT based company that has received a grant(s) from the Department of Energy's SBIR/STTR program. The abstract(s) for these grant award(s) are provided as well since they provide insights into VisTrails, Inc.'s business and areas of expertise. This project will develop the framework to capture and manage all the steps that are taken by a user interacting with existing scientific visualization systems. The result will be a complete audit trail of the computational processes that are required to reproduce an image or discovery.

H
HyPerComp

Hypercomp is a company that received a Department of Defense SBIR/STTR grant for a project entitled: Electromagnetic Scattering Effects of Sea on the Radar Cross Section (RCS) of Small Boats in Littoral and Deep Ocean Environments.. The abstract given for this project is as follows: A comprehensive approach is proposed to providing realistic geometric models for small craft moving in a littoral environment, including representations for the sea surface, suitable for use in computing radar returns from the combined surfaces using currently available electromagnetic solvers. In the phase I effort, HyPerComp, Inc., in collaboration with Prof. Patrick Lynett of Texas A&M University, will construct and demonstrate an interface that utilizes the output of Prof. Lynett's COULWAVE software, which generates time-dependent sea surfaces representative of both shallow and deep-water conditions, in combination with HyPerComp's sophisticated gridding tools, to provide complete surface-patch representations for the target environment. In later phases, this interface will serve the basis for writing a GUI that will allow the end user to specify a wide range of sea and target environments for the EM solvers. Hypercomp is a company that received a Department of Defense SBIR/STTR grant for a project entitled: Efficient Broadband Electrically Small Antenna Arrays. The abstract given for this project is as follows: HyPerComp proposes to build on the discontinuous Galerkin (DG)-based high order accurate broadband electromagnetics environment TEMPUS to provide modeling and simulation support to Navy's interests in the design of efficient small antennas. TEMPUS is a complete industrial grade CEM environment that includes all aspects of a CEM simulation such as CAD geometry modeling/repair, unstructured gridding for full-scale targets with general materials, parallel run set up (for PC- and workstation clusters) and higher order accurate solvers for Maxwell's equations, and postprocessing utilities for solution visualization and extraction of final results like antenna radiation patterns, and bistatic/monostatic scattering RCS, SAR images, and range profiles. The goal is to mature TEMPUS for modeling small antennas with metamatrials as well as coupling of the full wave solver with innovative non-Foster matching active circuits to candidate low-profile, conformal, wideband concepts in current vogue. Hypercomp is a company that received a Department of Defense SBIR/STTR grant for a project entitled: Signature Prediction and Uncertainty Analysis for Radar-based MDA Applications. The abstract given for this project is as follows: A new, highly efficient physics-based approach is proposed for mapping the variation in RCS of MDA targets of interest over the full range of angle, frequency, geometry, and material properties relevant in missile defense scenarios. This approach implements recent developments in reduced-basis methodology (RBM) for Maxwell's equations and combines the speed of RBM evaluations with the efficiency of stochastic collocation for uncertainty quantification to produce valid statistical measures of RCS variability, as well as RCS estimates of certified accuracy for each condition of observation. This RBM approach to RCS evaluation is built on generating accurate full-wave solutions for a small subset of the various parameters. In the proposed program, these solutions will be computed using the TEMPUS full-wave solver, which has demonstrated the ability to capture all the subtle effects of target structure on the radar return. For very large targets, the Cross-Flux technique will be used to combine TEMPUS and Xpatch solutions to produce an accurate hybrid solution. Speedup of the TEMPUS solver itself will be sought by implementing local time-stepping and variable-order local field representations. Porting the solver algorithms to a graphics card architecture will also be investigated, as that strategy offers speedups of 20 to 100. Hypercomp is a company that received a Department of Defense SBIR/STTR grant for a project entitled: Weapon System Performance in Complex Radio Frequency (RF) Environments. The abstract given for this project is as follows: In this proposed effort we seek to develop mesh repair algorithms that optimize preexisting meshes for CEM full wave solvers. We will investigate automated methods for converting asymptotic meshes to full wave CEM solver meshes. Mesh repair modules will implemented and accessed from a stand-alone tool with 3-D visualization capabilities or via C++ libraries that may be added to existing codes. The modules will include mesh resolution and quality repair capabilties using smoothing and mesh regeneration techniques. Mesh connectivity repair will be provided by a method that performs automatic restitching of the mesh across unconnected mesh boundaries. Procedures for converting asymptotic meshes to four sided surfaces, such that new fully connected mesh may be generated, will be implemented and tested. HyPerComp's many years of experience with grid generation technologies makes it well positioned to successfully implement the proposed techologies and provide greater usefullness for preexisting meshes, which can be very time consuming to create. Hypercomp is a company that received a Department of Defense SBIR/STTR grant for a project entitled: Efficient Small Antennas. The abstract given for this project is as follows: We propose here a systematic approach to designing efficient small antennas by applying innovative non-Foster matching techniques to candidate low-profile, conformal, wideband concepts in current vogue. The Phase-I project will be based exclusively on numerical analysis, spanning as wide a design space as possible, to provide a shortlist of the most promising design concepts which can be made small and unobtrusive. The performance of these designs will be judged based upon their radiation efficiency, gain- bandwidth and volume in both transmit and receive modes of operation. Comparisons with conventional small antenna concepts will be made, and potential gains will be assessed. Upon selecting the most promising baseline design for the radiating element as well as the non-Foster circuit, we seek to optimize the design and demonstrate its viability in a potential second phase of this project. This project will be a collaborative effort between HyPerComp Inc., and HRL Laboratories, LLC (Malibu, CA). HyPerComp has an extensive track record and pioneering contributions in the area of computational electromagnetics with applications to many key areas in the aerospace industry. HRL has an active interest in non-Foster matching circuits and is one of the industry leaders in antenna research and development worldwide. Hypercomp is a company that received a Department of Defense SBIR/STTR grant for a project entitled: Continuous Detonation Rocket and Air Breathing Engines. The abstract given for this project is as follows: We propose here a systematic sequence of advancements which can lead to the efficient and reliable operation of continuous detonation engines. The advancements sought will pertain to fuel injection, initiation and sustenance of detonation waves and the geometrical design of detonation channels and nozzles. A scalability study will be performed to assess the feasibility of the detonation engine at larger thrust levels and design alternatives needed at higher thrust levels will be explored. Phase-I research will rely upon analytical and computational models, and a test program is planned at the University of Texas at Arlington (UTA) for a potential second phase of this project. Ample prior experience on all these fronts is available with the proposing team of HyPerComp and UTA. Hypercomp is a company that received a Department of Defense SBIR/STTR grant for a project entitled: High-Speed Airbreathing Propulsion Integration. The abstract given for this project is as follows: In this proposal HyPerComp Inc., jointly with Lockheed Martin Aeronautics, GASL and the University of Texas at Arlington, seeks to create a high performance rapid test environment for hypersonic multimode airbreathing vehicle development. This will be achieved by a systematic sequence of advancements in both computational as well as experimental methods being used in the study of such systems. While due care will be taken to accurately represent the basic external aerodynamics, structural mechanics and heat transfer phenomena, the emphasis of this project will be placed on the study of dual-mode propulsion systems with integrated inlets/nozzles and multiple combustor paths, that are a vital ingredient in major ongoing vehicle programs such as the DARPA-FALCON. The integrated multiphysical approach to the study of the vehicle performance proposed here is aimed to supersede current techniques in component-wise modeling, external integration and lumped performance estimates. Developments in this area are timely, given the rapid pace of activity in hypersonic vehicle design concepts in recent times, such as in the X-51, FALCON-HTV/HCV and allied programs. The proposing team consists of industry leaders in flow simulation, testing, vehicle design and integration. Hypercomp is a company that received a Department of Defense SBIR/STTR grant for a project entitled: Dynamic Blade Shapes for Improved Helicopter Rotor Aeromechanics. The abstract given for this project is as follows: HyPerComp Inc. is teaming with NextGen Aeronautics and the Rotorcraft Center at the University of Maryland to explore the use of dynamic blade shapes (morphing) for improved rotor performance. Team members complement HyPerComp's core expertise in modeling and simulation of the rotors, NextGen's vast experience in actuator design and fabrication, and consultation from University of Maryland on dynamic blade shapes and smart materials. We propose a high-fidelity CFD-based investigation of five different dynamic blade shape concepts for rotor performance improvement: (1) camber variation; (2) trailing edge deflection; (3) leading edge droop; (4) blade twist distribution; and (5) tip geometry (sweep, anhedral, and planform taper). The Phase-I study would be performed for the Black Hawk UH-60A rotor. Hovering, steady-level high-speed forward, and high-thrust forward flights will be studied. Loosely coupled CFD-CSD (aero-elastic) simulations of the isolated rotor (no fuselage) will be performed to compute trimmed solutions and rotor performance. Phase-I study would conclude with the documentation of the effect of the different dynamic blade shapes on rotor performance and the down-selection of the most effective ones. For those concepts, a preliminary study of the physical realizability in terms of actuation mechanism concepts, power, stroke, and frequency will be performed.

Loading...

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.