Predict your next investment

INBRAIN Neuroelectronics company logo
HEALTHCARE | Medical Devices & Equipment / Therapeutic Devices
inbrain-neuroelectronics.com

See what CB Insights has to offer

Founded Year

2019

Stage

Series A | Alive

Total Raised

$18.03M

Last Raised

$16.9M | 6 mos ago

About INBRAIN Neuroelectronics

INBRAIN Neuroelectronics develops graphene brain interfaces with high-resolution recording and stimulation capabilities for brain-related disorders.

INBRAIN Neuroelectronics Headquarter Location

Route Suisse

1170,

Switzerland

+41795932037

Latest INBRAIN Neuroelectronics News

Merck and Inbrain Neuroelectronics collaborate on graphene-based bioelectronic therapy technology

Jul 9, 2021

Major pharma company Merck has announced a collaboration agreement with Innervia Bioelectronics, a start-up and subsidiary of Inbrain Neuroelectronics S.L., Barcelona, Spain. The aim of the collaboration is to co-develop the next generation of graphene-based bioelectronic vagus nerve therapies targeting severe chronic diseases within the therapeutic areas addressed by Merck. “We aim to accelerate developments in the emerging field of bioelectronics by boosting the novel modality of selective neurostimulation,” said Laura Matz, Chief Science and Technology Officer of Merck. “Today’s agreement with Innervia Bioelectronics gives Merck access to a unique technology that increases energy efficiency in neurostimulators and could therefore become a true enabler for digital personalized treatment of patients suffering from severe and chronic diseases such as inflammatory disorders.” Both partners will closely collaborate over the next few years to actively drive this potential paradigm change in treating diseases with high unmet medical needs. With its bioelectronics research facilities, Merck is well equipped and can build on its data science, clinical, regulatory, and quality expertise to bring novel devices to patients in the near future. Innervia will add its technical expertise in the development of graphene interfaces, device development, and signal processing for clinical applications. Initial work will focus on inflammatory, metabolic, and endocrine disorders, using the promising capabilities of graphene for miniaturization, precision, and high modulation efficiency in the vagus nerve. “This partnership highlights the importance of key players in their respective domains joining strengths to develop electronic therapies based on minimally invasive technologies and precise signal coding, enabled by graphene, for patients with debilitating, systemic, chronic conditions,” said Jurriaan Baker, CTO of Innervia Bioelectronics. “Our shared mission is to improve outcomes for these patients, who live with scarce information about their conditions and little control over their journey,” added Carolina Aguilar, Co-founder & CEO of Inbrain Neuroelectronics. “Bioelectronic devices have the capability to directly communicate with the nervous system. Recording nerve signals and combining them with other accessible physiological datasets will lead to a better understanding of disease conditions and enable personalized treatment regimens,” said Robert Spoelgen, Head of Bioelectronics, Merck Innovation Center. “We are convinced that bioelectronic devices will play a significant role in the future therapeutic landscape.” Altered and dysregulated nerve signals occur with many severe chronic diseases. Bioelectronic therapies aim to address a wide range of chronic diseases using small, implantable devices to modulate electrical signals passing along nerves in the body. Furthermore, neurostimulation devices are expected to become increasingly smart as a result of additional features such as continuous readouts, data analysis and data transmission, which will increase the energy use of the device. Yet at the same time, the devices are expected to miniaturize further. These trends are creating significant challenges for the supply of power to these devices. In addition, certain indications have particularly high and continuous power requirements due to the specific disease characteristics. With current technologies, it is extremely difficult to develop viable neurostimulation therapies for these indications. Improving the energy efficiency of these devices will play an important role in overcoming this power supply dilemma, since alternatives such as energy harvesting are still in their infancy and are far from practical clinical applications. Reduced Graphene Oxide (rGO) offers material characteristics for significantly decreasing power consumption while maintaining stimulation efficacy. This is achieved through a high charge injection limit combined with very low impedance compared with all other available electrode materials. The Bioelectronics innovation field of Merck builds on the company’s experience and expertise in its Healthcare and Electronics business sectors. This collaboration agreement complements a recently announced partnership between Merck, B. Braun and its start-up neuroloop GmbH to evaluate the feasibility of neurostimulators for targeted treatment of indications with high unmet medical needs. Source:

Predict your next investment

The CB Insights tech market intelligence platform analyzes millions of data points on venture capital, startups, patents , partnerships and news mentions to help you see tomorrow's opportunities, today.

Expert Collections containing INBRAIN Neuroelectronics

Expert Collections are analyst-curated lists that highlight the companies you need to know in the most important technology spaces.

INBRAIN Neuroelectronics is included in 4 Expert Collections, including Neuroscience.

N

Neuroscience

2,144 items

Companies developing products that monitor, analyze, protect, or otherwise influence the structure/function of the nervous system.

B

Bioelectronics

1,097 items

Companies developing/using technology aimed at detecting, interpreting, interrupting, eliciting, or redirecting electrical signals within the body

M

Medical Devices

7,738 items

Companies developing medical devices (per the IMDRF's definition of "medical device"). Includes software, lab-developed tests (LDTs), and combination products. *Columns updated as regularly as possible.

A

Advanced Materials

1,206 items

Startups developing new or improved materials (chemicals, alloys, etc.) that provide physical or functional advantages to basic materials.

INBRAIN Neuroelectronics Web Traffic

Rank
Page Views per User (PVPU)
Page Views per Million (PVPM)
Reach per Million (RPM)
CBI Logo

INBRAIN Neuroelectronics Rank

CB Insights uses Cookies

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.