Search company, investor...

Icast

Founded Year

1995

Stage

Acquired | Acquired

Total Raised

$3.12M

Valuation

$0000 

About Icast

Software products for PC-based voice and video broadcasting solutions

Headquarters Location

101 Albright Way

Los Gatos, California, 01801,

United States

781-994-4100

Missing: Icast's Product Demo & Case Studies

Promote your product offering to tech buyers.

Reach 1000s of buyers who use CB Insights to identify vendors, demo products, and make purchasing decisions.

Missing: Icast's Product & Differentiators

Don’t let your products get skipped. Buyers use our vendor rankings to shortlist companies and drive requests for proposals (RFPs).

Icast Patents

Icast has filed 1 patent.

patents chart

Application Date

Grant Date

Title

Related Topics

Status

12/9/2012

6/23/2015

Paper, Paper products, Food packaging, Polymers, Polyolefins

Grant

Application Date

12/9/2012

Grant Date

6/23/2015

Title

Related Topics

Paper, Paper products, Food packaging, Polymers, Polyolefins

Status

Grant

Latest Icast News

Bio-Sep propels sustainable composites development via forestry-produced biochemicals

Nov 15, 2022

Joint industry project with iCAST, NCC and University of Bath to produce and test bio-based composites from cellulose and lignin sawdust, replace fossil-derived ingredients. Photo Credit: Getty Images Biochemical supplier Bio-Sep ’s (Melton Mowbray, U.K.) mission is to maximize the mission of underutilized resources, particularly the use of low-value coproducts from agricultural and forestry operations as a more suitable — and sustainable — source of biochemicals. To achieve this, Bio-Sep has developed a low-energy ultrasonic process to convert woody biomass into chemicals. The Bio-Sep process generates almost zero waste, is water-use neutral and produces three high-value products (cellulose, sugar syrup and lignin), which have the potential to replace fossil-derived ingredients in resins, composites and more. “The world needs chemicals, plastics, composites and household goods that are not derived from crude oil, with its unsustainable impact on the environment, or from food crops, but instead from sustainable sources such as forestry,” Andy West, chief chemist at Bio-Sep, says. “Biorefining will enable a shift from fossil to renewable green carbon resources, helping decouple chemical production from fossil resources and reducing CO2 emissions.”   Biochemical alternatives Carbon, the backbone of many everyday materials and products, accounts for around 6% of global petroleum use. Societal concerns around climate change and decarbonization are driving what industry and policymakers are calling the Green Revolution, a movement in manufacturing from black petro-sourced carbon to green bio-sourced carbon. Bio-Sep’s aforementioned ultrasonic process solution produces a crystalline cellulose, which is a high value specialty chemical with applications in food and beverages, cosmetics and performance composites. Cellulose has been extracted from wood for the pulp and paper industry for many years. Lignocellulose is the fibrous or woody component of plants and trees, and consists of three components: cellulose fibers together with hemicellulose form a matrix which in turn is bound together by an aromatic biochemical called lignin. In nature this complex chemical structure of three biochemicals results in a solid cell wall that is resistant to wind, water, pests and sunlight. When separated from each other these biochemicals are known as bio-based platform biochemicals. Lignin is reported to be the world’s second most abundant biopolymer after cellulose. It is nature’s binding material, the substance that gives plants and trees their structural integrity and strength. Its aromatic structure makes it the most suitable biochemical to replace a toxic petrochemical called phenol, which is commonly used in resins, composites, coatings and adhesives. Fluctuations in the price of phenol due to changes in oil price, and concerns about the toxic exposure of workers to phenol during the manufacturing process, make lignin an attractive bio-derived alternative. Natural lignin could be used for a phenolic replacement to make sustainable resins. Lignin as an eco-substitute not only reduces the carbon footprint and toxicity for manufacturers but also provides additional performance benefits such as fire resistance and UV protection. Photo Credit: Confor, Foresty and Timber News, Wood in the Circular Economy Edition According to Bio-Sep, the composites industry presents an important market opportunity for suitable platform biochemicals. This includes lignin and cellulose produced in the U.K. from available biomass sources, the most abundant of which is sawdust from the forestry industry. Composites UK estimated the U.K. composites industry’s value at £16.64 billion in 2020 alone. Added to this, companies are increasingly focused on biomaterial use for sustainability strategies. “Manufacturers cannot see a future without sustainable chemicals,” West says. “Consumer behavior and government regulations such as carbon taxes will drive the change. In the future it is unlikely that chemicals will be purchased without a life cycle analysis, carbon footprint analysis and traceable supply certificate.”   R&D opportunities for composites Bio-Sep has recently embarked on a joint industry project together with The innovation Centre of Applied Sustainable Technologies (iCAST), the National Composite Centre (NCC, Bristol, U.K.) and the University of Bath (U.K.) for the production and testing of bio-based composites from cellulose and lignin. Market testing will be undertaken by Scott Bader (Northamptonshire, U.K.), a global manufacturer of resins and composites. The NCC are looking to enhance their experience and understanding of the properties and manufacture of novel, sustainable materials. For this project the institute will will be testing the mechanical properties and performance of Bio-Sep-produced lignin and cellulose blends as a composite binder/matrix material. The University of Bath will be producing and testing concrete materials incorporating Bio-Sep’s products as admixtures. Early results from the project are looking promising with demonstrable performance benefits and carbon reduction potential. This project will enable the identification of construction and composite applications for lignin and cellulose extracted from U.K.-grown sawdust (generously supplied to Bio-Sep by James Jones & Sons). With tried and tested performance characteristics, the high growth U.K. composites industry could make use of these low carbon, renewable materials, to displace petrochemical materials, create a local biochemical supply chain and enhance product sustainability. “We also have another project in the pipeline which will look deeper into lignin as a coating,” West adds. “I can see a future where we produce a waterproof, fire-resistant composite out of 100% forestry-produced biochemicals that can be recycled again by our process at end of life [EOL] to create something new, resulting in truly circular green materials.” Original article courtesy of  Foresty and Timber News , Wood in the Circular Economy Edition, October 2022, Issue 113, republished by Bio-Sep Marketing. RELATED CONTENT

Icast Frequently Asked Questions (FAQ)

  • When was Icast founded?

    Icast was founded in 1995.

  • Where is Icast's headquarters?

    Icast's headquarters is located at 101 Albright Way, Los Gatos.

  • What is Icast's latest funding round?

    Icast's latest funding round is Acquired.

  • How much did Icast raise?

    Icast raised a total of $3.12M.

  • Who are the investors of Icast?

    Investors of Icast include First Virtual Communications, Accel and Blumberg Capital.

Discover the right solution for your team

The CB Insights tech market intelligence platform analyzes millions of data points on vendors, products, partnerships, and patents to help your team find their next technology solution.

Request a demo

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.