Predict your next investment

EnduroSat company logo
INDUSTRIAL | Aerospace & Defense
endurosat.com

See what CB Insights has to offer

Founded Year

2015

Stage

Debt | Alive

Total Raised

$11.76M

Last Raised

$11.76M | 3 mos ago

About EnduroSat

EnduroSat designs, builds, and space-qualifies CubeSat modules and CubeSat platforms for a range of missions from low Earth orbit to Solar System exploration.

EnduroSat Headquarter Location

16 Tundzha Str.

Sofia, 1606,

Bulgaria

Latest EnduroSat News

Top 10 Satellite Trends, Technologies & Innovations for 2022

Nov 30, 2021

Technological innovations in satellites enable the majority of advancements in the space industry as a whole. The most significant satellite trends include small satellites or smallsats, especially NanoSats, that drive the next generation of satellite capabilities. Further, the low manufacturing cost of smallsats is paving the way for the mass production of satellites. Satellite Internet of Things (IoT) is another major trend enabling unprecedented connectivity across industries and empowering 5G and upcoming 6G capabilities. Simultaneously, satellite manufacturers and operators are bringing technological innovations to ground stations as well as orbital services. Digitized payloads, propulsion systems, and technologies such as Artificial Intelligence (AI) enable satellites to perform more complex functions autonomously. Thanks to increasing government and private investments, startups working on satellite manufacturing, operations, and services are laying the foundations for a new age of small intelligent satellites. Innovation Map outlines the Top 10 Satellite Trends, Technologies Plus 20 Promising Startups For this in-depth research on the Top Satellite Trends, Technologies & Startups, we analyzed a sample of 1 361 global startups and scaleups. The result of this research is data-driven innovation intelligence that improves strategic decision-making by giving you an overview of emerging startups in the satellite industry. These insights are derived by working with our Big Data & Artificial Intelligence-powered StartUs Insights Discovery Platform , covering 2 093 000+ startups & scaleups globally. As the world’s largest resource for data on emerging companies, the SaaS platform enables you to identify relevant startups, emerging technologies & future industry trends quickly & exhaustively. In the Innovation Map below, you get an overview of the Top 10 Satellite Trends & Innovations that impact SpaceTech companies worldwide. Moreover, the Satellite Technology Innovation Map reveals 20 hand-picked startups, all working on emerging technologies that advance their field. Click to download Tree Map reveals the Impact of the Top 10 Satellite Trends & Technologies Based on the Satellite Technology Innovation Map, the Tree Map below illustrates the impact of the Top 10 Satellite Trends & Technologies. Startups and scaleups are innovating with small satellites to be deployed in low-earth orbit (LEO) constellations for greater internet connectivity and speed. Scaleups also meet this need by very-high throughput satellites both in LEO and GEO orbits. Satellite IoT enables improved cloud computing, IoT solutions, and backhaul for existing terrestrial systems. In-orbit technologies such as mission extension and service robotics are emerging satellite technology trends. Emerging satellite companies ensure that ground systems are technically advanced by using optical communications and advanced terminals. AI, for example, enables autonomous satellite operations and increases data processing power. Further, satellite bus designs now accommodate reconfigurable payloads, smart power systems, and onboard propulsion technologies. Satellite launch costs are also lowered by improvements in reusable rockets and using flexible launch sites. Lastly, additive manufacturing equips satellite startups to assemble large space structures both in space and on earth. Click to download Global Startup Heat Map covers Satellite Technology Startups & Scaleups The Global Startup Heat Map below highlights the global distribution of the 1 361 exemplary startups & scaleups that we analyzed for this research. Created through the StartUs Insights Discovery Platform, the Heat Map reveals that the US and the UK lead the way with a high concentration of startups & scaleups, followed by India and Europe. Below, you get to meet 20 out of these 1 361 promising startups & scaleups as well as the solutions they develop. These satellite technology startups are hand-picked based on criteria such as founding year, location, funding raised, and more. Depending on your specific needs, your top picks might look entirely different. Click to download Equipped with smarter and compact subsystems, small satellites are replacing the need for large satellites and related infrastructure. Commercial satellite operators for connectivity services deploy constellations of smallsats in LEO to provide global coverage with low latency. For similar reasons, small satellites are increasingly positioned in LEO constellations for Earth observation (EO) and remote sensing to generate superior insights. Satellite startups advance this trend through mass production, rocket ride-sharing with other missions, modular commercial-off-the-shelf (COTS) hardware, and standardized satellite buses. Satellite operators and owners also minimize costs through vertical integration in satellite manufacturing. These advances are leading satellite manufacturers to experiment with new space technologies using smallsats as well as build smallsats for GEO orbits. Galaxy Space provides Communication Services via Smallsats Galaxy Space , a scaleup from China, mass produces small satellites with modular components and small structures. The startup has already sent 1000 small satellites, equipped with innovative communication payloads, like constellations in the 500-1000Km low earth orbit. These constellations provide 5G network coverage and broadband services to users across the globe. This also serves industries such as aviation, marine, automobile, and manufacturing and is used for emergency response and ecological protection. Mission Space predicts Space Weather using LEO Constellations Latvian startup Mission Space deploys its own network of nanosatellite constellations, installed with custom sensors, to provide predictive space weather monitoring. The startup’s forecasting system measures near-earth magnetic and solar storms, in addition to charged-particle streams of up to 600km. This real-time satellite data is used across industries such as aviation, energy, and financial trading to prevent disruptions caused by space-weather radiation risks. 2. Satellite IoT The demand for Satellite-enabled Internet of Things is growing steadily owing to the extensive coverage provided by satellites compared to the existing terrestrial infrastructure. Governments and private sector investment in satellite technology for connected systems and solutions are driving the technological advancements in satellite IoT. Commercial solutions involve deploying IoT sensors and devices for satellite-based, precise, and real-time asset tracking, monitoring, and remote surveillance in any part of the world. Advanced devices and sensor technologies in satellites also empower a new range of cloud and edge computing capabilities. Some of the biggest advances in satellite IoT come from its application in the military and defense. For example, terrestrial communication networks suffer coverage limitations at extreme locations and often depend on land and sea cables. Startups provide hybrid services using satellite IoT as backhaul to existing terrestrial networks, improving the overall infrastructure. FOSSA Systems offers Low-Cost Satellite IoT Solutions FOSSA Systems , a Spanish startup, brings secure and optimized satellite IoT communications at a low cost. The startup uses dedicated picosatellite constellations to connect with IoT-enabled devices and facilitates strategic monitoring even at remote locations. The solution enables high capacity vertically-integrated industrial and commercial IoT services through its autonomous IoT sensors and platform. It is already improving productivity in agriculture, logistics, and industrial environments through its digitized solutions. Fleet Space enables NanoSat-based IoT Solutions Australian startup Fleet Space uses the LoRaWAN protocol of the low-power wide-area network (LPWAN) and LEO satellite constellations to provide bi-directional industrial IoT solutions. Its 6U NanoSatellites with 3D printed antenna and digital beamforming for LPWAN improve satellite-to-ground station connectivity, thereby providing more throughput for remote industrial monitoring. Their integrated satellite and LoRaWAN gateway, The Portal, connects up to 1000 IoT sensors within a 15km range. The solution finds applications in the defense, utility, and mining sectors. 3. In-Orbit Services Satellite technology companies are solving two major challenges impacting satellite performance in space: servicing an orbiting satellite and decluttering the space in low earth orbit. The exponential rise in satellites launched has led satellite operators to employ space situational awareness (SSA) for detecting and cleaning space debris. Self-destruction and other deorbiting technologies introduced by startups for decommissioning satellites are proving sustainable for the future of space. Another satellite technology trend to declutter space is by increasing the lifespan of existing satellites. Startups and scaleups are advancing in these services by using mission extension vehicles, also known as space tugs, to service or upgrade orbiting satellites by stacking with them. Other orbital services include orbital transfer vehicles, as well as payload and cargo delivery vehicles. Autonomous robotic technology further improves satellite maintenance efficiency by performing in-space satellite servicing and repairs. Obruta provides Satellite In-Orbit Servicing Canadian startup Obruta uses its proprietary service pods and systems to perform satellite servicing while in orbit. Satellites are either equipped with the Puck, Obruta’s 4-in-1 service interface or receive repairs through its service delivery pods. These technologies revive the satellite through refueling, repairing, recharging, relocating, deorbiting, data-transfer, or life extension. This empowers satellite operators to increase mission duration and mitigate critical mission failures. Atomos develops Orbital Transfer Vehicles US-based startup Atomos uses its Orbital Transfer Vehicle (OTV) or space tugs for custom last-mile orbit insertion of satellites. Space tugs carrying satellites orbit the earth for precise satellite orbit insertion, orbit raising, phasing, and satellite plane changes. It does so by rapidly utilizing high-power electric propulsion and Atomos’ proprietary ubiquitous rendezvous operations. This allows satellite launchers to manage orbital transfers and satellite servicing at low costs. 4. Advanced Ground Systems Innovation in telemetry, tracking, and command-to-control satellites make next-generation ground systems a top satellite technology trend. Ground stations use radio-frequency (RF) communication terminals, including electronically-steered and phased-array antennas, to track satellites with minimal human intervention. Similarly, the rise of satellite constellations requires modern inter-satellite links for coordinated constellation movement. For this, startups operating earth stations utilize smart RF and optical communication technologies for better in-orbit relays in upstream and downstream data transfer. In addition to existing stations, startups develop decentralized communications terminals for satellite connectivity in moving vehicles and remote locations. On the commercial end, ground stations are empowering software-defined satellites by enabling virtualized ground networks. These technologies enable satellites to autonomously reallocate, reconfigure, and handle massive bandwidth, as per demand, to support a growing number of end-users. Arctic SpaceTech provides Decentralized Ground Station Services Arctic SpaceTech , a Swedish startup, offers secure downstream satellite data handling by digitizing ground stations. Instead of using the cloud, the startup decentralizes satellite data processing next to the existing network of ground stations. It, therefore, enables low latency, real-time data processing while reducing bandwidth and storage requirements on the network for ground station and satellite operators. Spaceit offers Mission Control-as-a-Service Estonian startup Spaceit utilizes its platform to offer scalable mission control services from the ground. The platform integrates existing ground stations with satellite missions using telemetry, tracking, and command (TTC) protocols to begin real-time monitoring. The startup enables satellite operators to reduce operational costs by eliminating custom software development, hardware investments, and ground station licenses for satellite management. The large volumes of data collected by satellites pose challenges in data handling, analysis, and timely resource management. AI manages the most complicated aspects of these challenges. Utilizing machine learning (ML) algorithms enables the analysis of satellite data obtained from EO, Global Navigation Satellite System (GNSS), infrastructure monitoring, and remote sensing. AI-facilitated data analysis on the cloud is paving the way for Ground-Station-as-a-Service solutions. Ground stations also use AI technology for ground-based SSA to command satellites for course correction or resource optimization. In space, AI is used for real-time orbit prediction and satellite tracking for enhanced space traffic management. Further, in satellite subsystems, big data and analytics empower onboard sensors with autonomous data processing capabilities, before downstream data transfer. AI-enabled subsystems also make autonomous satellite maneuvers such as relative navigation, pre-emptive communications correction, spacecraft rendezvous, docking, and satellite constellation operation possible. SatSure provides Satellite Data Analytics SatSure is an Indian startup that commoditizes data from remote sensing satellites. The startup’s open innovation platform, SPARTA, combines IoT, economic, and weather datasets with data gathered from earth observation (EO) satellites. The startup uses machine learning algorithms and big data analysis for this purpose. SPARTA then produces actionable insights for banking, financial services and insurance (BFSI), agriculture, infrastructure, and climate sustainability for the locations in focus. AIKO enables Autonomous Satellite Missions Italian startup AIKO provides E-4-level autonomy in satellites through its advanced flight software for both onboard and ground systems. The startup utilizes AI for creating custom algorithms for autonomous mission command and data handling. It also engages AI for detection and reconfiguration of mission-critical events in satellites providing failure detection, data selection, and mission replanning. For satellite operators, it provides an efficient and cost-effective ground-based SSA solution. Looking for more satellite technology startups & technologies? 6. Advanced Payload Systems Payloads are the backbone of satellite missions and their advancement is, therefore, a top satellite technology trend. Startups find it profitable to use modular payloads instead of custom-made ones. Besides cost consideration, both startups and scaleups now use standardized payloads, readily-available in the market, for enhancing the quality and capacity of satellites. Consequently, sophisticated COTS equipment such as high-resolution imaging and spectral sensors like Synthetic Aperture Radar (SAR), miniaturized transceivers, such as foldable antennas are finding a place in satellite payloads. Technological advances also enable startups to make autonomous satellite payloads that perform tasks such as frequency and power allocation to high-demand beams and important subsystems. Payloads are also made reconfigurable using installed software to perform custom functions other than the satellites’ original purpose. This way old satellites in orbit are repurposed for new missions rather than be decommissioned and added to space debris. EnduroSat manufactures CubeSat Modules EnduroSat is a Bulgarian startup that manufactures modular payloads for the CubeSat class of nanosatellites. The startup exercises a software-driven approach in its 1U to 6U sized CubeSats modules to make multiple redundancies of data. The modules are CubeSat standard-compliant and range from off-the-shelf transmitters and single or multiple band antennas to custom CubeSat modules. This provides satellite operators with the flexibility to deploy their own satellites using EnduroSat’s modules. Anyways provides COTS Antennas French startup Anywaves builds custom and off-the-shelf miniature antennas for satellite constellations. Their antennas are operational in telemetry, tracking, and command (TTC), Global Navigation Satellite Systems (GNSS), and as onboard payloads. These antennas serve from the range of S and X-band frequencies to all bands for GNSS. Anywaves’ COTS antennas are ready to be installed in satellites and enable time and cost-saving for satellite manufacturers and owners. 7. Spacecraft Propulsion High-capacity power and propulsion systems that enable satellites to travel deep into space and perform complex maneuvers are becoming a staple in the industry. As a result, smart innovations such as high-power solar arrays, miniaturization of traditional fuel sources, like battery improvements, are incorporated readily in new satellites. Low-weight thrusters are restructured for optimized performance and similar improvements are observed in chemical propulsion for thrusters. There is also a shift towards incorporating sustainable propulsion systems onboard. Amongst the green propulsion technologies, both startups and scaleups are using electric propulsion instead of conventional systems. Other novel green propulsion technologies include nuclear, solar, water, laser, and even Iodine-based propulsion. For example, electromagnetic tethering is a green propulsion technology that enables the movement of small satellites without the need for onboard fuel. Ienai SPACE develops Onboard Propulsion for Nanosats Spanish startup Ienai SPACE makes mission-adaptable onboard electric propulsion for custom-form nano and microsatellites. The startup employs ionic propulsion for providing adjustable total and high specific impulse, 360-degree altitude control, and reaction wheel desaturation. The startup’s modular approach towards onboard propulsion maximizes payload occupation for satellite operators. Aliena builds Green Space Propulsion Solutions Singaporean startup Aliena manufactures miniaturized green propulsion systems for SmallSat mobility in space. Aliena’s plasma thrusters are built with a high power-to-thrust ratio, specifically designed for low-power small satellites. It empowers small satellite operators to reduce fuel consumption while continuing to perform orbital services, constellation phasing, maintenance, and deorbiting at its end-of-life. 8. Very High Throughput Satellites (VHTS) Demand for satellite mobile and broadband communications is surging and GEO satellite communication providers respond by increasing their strength and throughput capabilities. This implies that GEO satellites utilize advanced transponders and software-defined radios to transmit data at several hundreds of gigabytes or even terabytes per second. Software-defined radio equips the satellites to cater to fluctuating demands by beam hopping, changing shape coverage, and specifically targeting high capacity areas. Higher demands are catered to by increasing frequency in different frequency bands and using technologies like multi-spot beams. Satellite providers opt for Ku- and Ka-frequency bands for communications since these provide greater signal capacity and frequency reuse efficiency. With VHTS, connectivity over land, air, and sea for consumer, commercial, or military applications at unserved and underserved locations is now possible. LEO or Non-GEO constellations also leverage VHTS data supply with low latency to serve the consumer market with greater flexibility. Cesium Astro facilitates High-Throughput (HTP) Payloads By developing high-throughput communication payloads, US-based startup Cesium Astro enables telecommunications satellite operators to serve this emerging market. Vireo, the startup’s multi-beam active phased array (APA) system is designed for HTP satellites with size, weight, payloads, and cost (SWaP-C) constraints. The startup’s system provides users with HTP capabilities along with control over power consumption, beam hopping, beam-weight storage, and optimized constellation performance. Novo Space provides HTP Computing for Large Satellites US-based startup Novo Space empowers large satellites with SpaceVPX-standard HTP backplane electronics for onboard components. These standardized parts use proven technologies in hardware and software, thereby, mitigating risks and costs for satellite operators. These radiation-tolerant components include onboard computers, signal processors, carriers, and mass memories with 10x Gpbs high-throughput interfaces.​ 9. Flexible Launch Services Unlike a decade ago, the size and number of satellites that are launched in a particular orbital flight determine the requirement of launch vehicles engaged for the job. Therefore, flexible and on-demand launches are sought-after by satellite owners due to increasing smallsats and overall satellites launched into orbit. Air launch to orbit, launch using spacecraft, balloons, autonomous launch vehicles or drones are some flexible satellite launch techniques that startups and scaleups are innovating in. Containerization of smallsats for easy launch to LEO constellations is another innovation in ground-based launch services. The biggest innovation in ground launch systems, however, is the use of reusable rockets for positioning satellites in any orbit. Drastically lower launch costs prompt commercial satellites to be launched using reusable rockets. Startups also develop large, small, and micro launch vehicles catering to all types of satellites. Sidereus Space makes Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicles Utilizing its reusable launch vehicle, Italian startup Sidereus Space provides flexible satellite launch solutions from anywhere in the world. The startup’s multi-purpose launch vehicle provides satellite owners with launch and orbital re-entry capabilities. It leverages miniaturized propulsion technology to provide SSTO for both LEO and sun-synchronous orbits (SSO) within a few weeks. Aphelion Aerospace provides NanoSat Launch Services US-based startup Aphelion Aerospace develops dedicated nanosatellite launch services.​ Its Helios launch vehicle is capable of putting spacecraft in any orbit suited to the mission, including polar and high inclination orbits. The startup launches specific missions that do not involve ride-sharing or have complex launch requirements. This dedicated launch service accelerates orbital access for satellite missions without having to wait months for scheduling launches. High costs of producing satellites and their subsystems, suitable for the harsh space environment, are lowered by taking advantage of additive manufacturing techniques. Satellite buses, customized payloads, and even rocket engines in satellite launchers are now 3D printed by satellite manufacturers. Startups use 3D printing technology on a large scale to mass-produce satellites for LEO constellations. Digital twins of bespoke and complex satellite parts are created and 3D printed. This speeds up prototyping and testing of satellites and their parts, in turn, reducing the manufacturing lead time and costs. Likewise, small parts of large space structures are 3D printed on the ground and assembled in space. This saves the cargo volume and fuel required to put large structures in space. In-space additive manufacturing further helps in performing upgrade missions for satellites in orbit by replacing malfunctioned components with 3D printed parts. Isar Aerospace 3D-prints Launch Rocket Parts German startup Isar Aerospace uses advanced additive manufacturing and carbon composite materials to manufacture rockets for launching satellites. Additive manufacturing empowers the startup to build high-performance metals with precision and provide flexibility and speed to its stakeholders. Its in-house manufactured Spectrum launch vehicle is already putting satellites in the SSO for up to 700 Kgs and in LEO for up to 1000 Kgs. Relativity Space builds 3D-printed Rockets US-based startup Relativity Space employs additive manufacturing to produce its satellite launch rockets. The startup uses its own large 3D metal printer, Stargate, to produce its rockets Terran 1, and reusable rocket Terran R. 3D printing reduces rocket production lead time from years to a couple of months. It also empowers Relativity Space with reduced radical part counts, quick design iterations, and optimizations to real-time quality control and inspections. Discover More Satellite Trends, Technologies & Startups Innovations in the satellites industry are happening at light speed. In addition to the smart subsystems, the next generation of space satellites utilizes more advanced technologies as discovered in our research for satellite technology trends. Satellite avionics are also advancing towards miniaturized and radiation tolerant systems. Smart avionic systems enable onboard equipment health and usage monitoring as well as precise Guidance, Navigation, and Control (GNC). Thanks to the plethora of satellite technologies, space tourism is also on the rise. The rise of these new technologies and services ultimately enables humans to explore deep space while improving the quality of life on earth. The Top 10 Satellite Trends, Technologies & Startups outlined in this report only scratch the surface of trends that we identified during our in-depth innovation and startup scouting process. Among others, small satellites, flexible launch services, and advanced payload systems will transform the sector as we know it today. Identifying new opportunities and emerging technologies to implement into your business goes a long way in gaining a competitive advantage. To explore more space technologies, simply get in touch to let us look into your areas of interest. For a more general overview, you can download our free SpaceTech Innovation Report to save your time and improve strategic decision-making. Get your free SpaceTech Innovation Report We’ll deliver it straight to your inbox! First & Last Name*

Predict your next investment

The CB Insights tech market intelligence platform analyzes millions of data points on venture capital, startups, patents , partnerships and news mentions to help you see tomorrow's opportunities, today.

EnduroSat Web Traffic

Rank
Page Views per User (PVPU)
Page Views per Million (PVPM)
Reach per Million (RPM)
CBI Logo

EnduroSat Rank

CB Insights uses Cookies

CBI websites generally use certain cookies to enable better interactions with our sites and services. Use of these cookies, which may be stored on your device, permits us to improve and customize your experience. You can read more about your cookie choices at our privacy policy here. By continuing to use this site you are consenting to these choices.