
BirdShades
BirdShades Patents
BirdShades has filed 1 patent.
The 3 most popular patent topics include:
- Architectural elements
- Aviation safety
- Structural engineering

Application Date | Grant Date | Title | Related Topics | Status |
---|---|---|---|---|
5/5/2020 | Architectural elements, Structural system, Structural engineering, Synodontis, Aviation safety | Application |
Application Date | 5/5/2020 |
---|---|
Grant Date | |
Title | |
Related Topics | Architectural elements, Structural system, Structural engineering, Synodontis, Aviation safety |
Status | Application |
Latest BirdShades News
Nov 12, 2019
12.11.2019 Das 2018 von den Biologinnen Bettina Kain und Dominique Waddoup in Leoben gegründete Start-Up BirdShades will mit einer Folie für Glasfassaden und Fenster, die mit für das menschliche Auge nicht wahrnehmbaren UV-Licht arbeitet, zahllose Vögel vor Kollisionen schützen und damit diesen letztlich auch das Leben retten. (c) Foto Freisinger share our story Am Anfang der Gründungsgeschichte von BirdShades stehen jede Menge tote Vögel. Ebenjene befanden sich in weiße Plastiksackerln gepackt in der Tiefkühltruhe am Biologie-Institut der Universität in Graz. Ein Professor, mit dem die beiden Frauen eigentlich ein Treffen zum Vogel-Monitoring ausgemacht hatten, sammelte diese toten Tiere, die beim Glasübergang der Universität ihren Tod gefunden hatten. Vom herkömmlichen Aufkleber zur unsichtbaren High-Tech-Folie Solcherart aufgerüttelt begannen die beiden tierliebenden Biologinnen nachzudenken, wie sich dieser Umstand ändern ließe. Naheliegenderweise kamen die beiden auf ganz gewöhnliche, sich bereits am Markt befindliche Aufklebefolien. “Es gibt Folien, welche mit Mustern und Streifen in verschiedenen Farben Vögel vor Glas warnen”, sagt Gründerin Bettina Kain. Da hierbei aber die gesamte Glasfläche nach bestimmten, bestenfalls nach von der Umweltanwaltschaft festgelegten Richtlinien, beklebt werden muss, ergibt sich ein doch beträchtlicher Eingriff in die Ästhetik und Optik der Glasflächen. Man recherchierte und forschte also weiter nach anderen, schöneren und womöglich auch wirksameren Methoden. Wissenschaftliche Paper brachten schließlich den entscheidenden Durchbruch, dem der Startschuss folgte. In jenem Text wurde dargelegt, dass Vögel UV-Licht wahrnehmen. “Wir kamen also letzten Endes auf eine Lösung, die genau mit diesem Faktum arbeitet”, hält die Gründerin Kain fest. Der Vorteil liege auf der Hand: “Die Glasfläche bleibt damit transparent, weil besagte Folie nur der Vogel sieht”. Spezielle Tinte auf Fensterfolien Als Basis wird eine herkömmliche Fensterfolie verwendet, welche mit speziellen Tinten bedruckt wird, die im UV-Bereich aktiv sind. BirdShades operiert dabei mit verschiedenen Tinten und speziellen Designs. Letztere hat man auf ihre Wirksamkeit getestet. “Jetzt wissen wir, dass ein ganz bestimmtes Design besser wirkt, da es einen höheren Kontrast erzeugt”, sagt Kain. Dadurch könne man, wie die Gründerin konstatiert, nunmehr auf eine “hohe Vermeidungsrate” verweisen. Gegenwart und Zukunft von Birdshades Anfang 2019 wurde die PreSeed-Finanzierungsrunde mit dem VC SOS Ventures sowie den Förderungen AWS PreSeed und FFG Patentscheck abgeschlossen. Im Mai 2019 konnte die erste Folie produziert werden. Somit befindet man sich also in der Beta-Phase. Derzeit läuft ein Pilotkunden-Programm, bei dem die Folie im Freiland getestet wird. Im Frühjahr 2020 soll dann die nächste Folien-Version, die zuvor ebenfalls durch eine weitere Testphase gehen wird, bereitstehen. Insgesamt gilt es jedenfalls, noch einige “technische Herausforderungen” zu bewältigen, meint Kain. BirdShades startet jedenfalls demnächst mit der Seed-Finanzierungsrunde, um das Produkt auf den Markt zu bringen. Zudem ist das Team auf der Suche nach strategischen Partnern, wie Kain betont. Produkt soll im Jahr 2021 auf den Markt kommen Im Frühjahr 2021 möchte man mit BirdShades dann schließlich so weit sein, in den Markt einzutreten. “Vorerst möchten wir uns dann auf die DACH-Region konzentrieren”, streicht Kain heraus. Auch Kundensegmente hat man schon klar anvisiert: “Wir fokussieren Geschäftskunden und damit vornehmlich staatliche und private Unternehmen wie etwa ÖBB oder ASFINAG”, gibt sie Einblicke in Zukunftspläne. Auch größere Gebäude wie beispielsweise Museen, Liftstationen und natürlich Bürogebäude benennt sie als potenzielle Orte für die neu entwickelte Folie. Die Birdshades-Folie im Einsatz (c) Birdshades “Wir haben das Patent bereits angemeldet”, sagt Kain bezüglich der Patentierung der Folie bzw. des Verfahrens. Längerfristig soll dann der weltweite Markt angegangen werden. Auch die USA und den kanadischen Markt hat man im Blick. “Das Potential ist enorm, zumal die Gesetzeslage bezüglich des Vogelschutzes in Europa, Amerika und Kanada verschärft wird”, weiß Kain. Das gelte vor allem dann, wenn sich Gebäude in Naturschutzgebieten befänden, ergänzt sie. Zuvor gelt es aber auch noch, insgesamt die Bewusstseinsbildung in Österreich voranzutreiben. “Diese ist in Österreich leider noch nicht so wirklich gegeben, obwohl die Umweltanwaltschaft und Birdlife-Österreich dahinter sind”, schließt Kain und scheint sich dabei sowohl der noch anstehenden Arbeit bei der Weiterentwicklung der Folie und der Bewusstseinsbildung als auch des enormen Potenzials voll bewusst zu sein.
BirdShades Frequently Asked Questions (FAQ)
When was BirdShades founded?
BirdShades was founded in 2019.
Where is BirdShades's headquarters?
BirdShades's headquarters is located at Peter-Tunner Straße 19, Leobendorf.
What is BirdShades's latest funding round?
BirdShades's latest funding round is Convertible Note.
How much did BirdShades raise?
BirdShades raised a total of $80K.
Who are the investors of BirdShades?
Investors of BirdShades include SOSV, Women TechEU and RebelBio.
Who are BirdShades's competitors?
Competitors of BirdShades include Solar Solve and 4 more.
Compare BirdShades to Competitors
Naxellent is a company that received a SBIR Phase I grant for a project entitled: Smart transparent solar heat management films. Their project proposes to demonstrate a flexible transparent film technology that automatically reflects near infrared (NIR) solar heat above, but allows the same to transmit through below the room temperature. Using the large discontinuous change in refractive indices across a first order phase transition in liquid crystals (LCs), the proposed polymer and LC composite structure shows index matching at lower temperatures but shows significant index mismatching at higher temperatures. The index mismatched polymer and LC structure at higher temperatures is designed to transmit visible light but to reflect a broad band of NIR radiations. The developed film may be laminated or used as retrofits into glass windows for architectural and vehicular applications to reject solar heat on a hot summer day but allows the same to warm the interior on a colder winter day while the glass windows maintain clear at all times. Full use of such films may save consumers billions of dollars annually in air conditioning costs in summer. The flexible polymeric structure with vastly available materials and scalable thin film manufacturing technologies makes the technology economically very attractive and readily affordable, and successful development of the proposed film technology could have enormous environmental and economical impacts.
Sun Innovations is a company that received a SBIR Phase I grant for a project entitled: Advanced Nano-Phosphors for Novel Electronic Displays. Their project will develop phosphorescent nano-materials for full windshield display (FWD). The PI has developed single color FWD technology, which has been demonstrated to the automotive industry. New, advanced nano-phosphors will be developed to overcome many of the current problems with organic dyes, and will be tested in this work. The development of bright, stable, transparent nanophosphors with multiple colors will enable new and exciting display techniques for daylight full window displays that could be used in multiple applications. Sun Innovations is a company that received a SBIR Phase II grant for a project entitled: Novel Projection Display System. Their project will develop a novel "fluorescent emissive projection" (FEP) display system, which will turn a glass window or windshield into a full color, high contrast electronic display panel, without blocking the view through the glass. The team will develop novel display engines as well as quantum dots based display materials while also integrating these key components into a full color 40 inch size FEP display prototype. The reliability and regulatory concerns for commercial applications will be investigated in Phase II. If successful this innovative display-on-glass technology will create a broad spectrum of commercial applications with significant market sizes and economic benefits. Success of this project could enable a mass deployment of the display technology in commercial advertising places and automobiles. The new display technology will be applied broadly for many commercial applications, such as the display on store front glass windows or cabinets to attract consumers into stores. It will present real-time commercials on glass windows, without blocking the view into the store and its displayed merchandises. Given the huge number of glass windows and windshields where the technology can be implemented, it has very significant economic impacts. Sun Innovations is a company that received a SBIR Phase I grant for a project entitled: Novel Projection Display System. Their project will develop and demonstrate an innovative technology to turn a transparent glass or plastic panel into a full color, high contrast electronic information display, without affecting the optical transparency of the panel. Novel quantum dots based materials will be developed and applied to the display, in addition to the demonstration of a corresponding video color projector. The feasibility on a color 20 inch transparent video display system for indoor application will be demonstrated prior to developing a fully functional large panel transparent display prototype. This display technology will leverage and create a broad spectrum of commercial applications and change the way people use "glass" for centuries. For example, success of the project will enable a mass deployment of the innovative transparent display technology in automobiles and significantly improve the safety of US highway: It will properly deliver message or alerts to drivers, who don't have to turn eyes away from the road to search for information under the dashboard display.
Nanomaterials and Nanofabrication Laboratories (NN-Labs, LLC) is a Fayetteville, AR based company that has received a grant(s) from the Department of Energy's SBIR/STTR program. The abstract(s) for these grant award(s) are provided as well since they provide insights into Nanomaterials and Nanofabrication Laboratories (NN-Labs, LLC)'s business and areas of expertise. This project will develop novel non-toxic doped-semiconductor nanophosphors to improve the energy efficiency of high brightness white light emitting diodes (LEDs) for general illumination applications. The nationwide energy cost savings for lighting in buildings alone could reach into the billions of dollars annually and provide an environmental benign alternative to fluorescent lamps which contain mercury vapor.
Advanced Photonic Crystals is a company that received a STTR Phase I grant for a project entitled: Ammonothermal Growth of Doped Aluminum Gallium Nitride Single Crystals for Energy Efficient Solid State Lighting and Tunable LED's. Their award is funded under the American Recovery and Reinvestment Act of 2009 and their project will address the problem of a multifunctional wide band-gap aluminum gallium nitride single crystal substrate that will enable low-defect, high-performance epitaxial growth. Since much of the energy consumed in the U.S. used for traditional lighting is wasted as heat, solid-state lighting (SSL) has the potential to reduce our energy consumption dramatically. The technology is lacking a critical material that will allow production of high efficiency devices however. Single crystals of AlGaN substrate will enable the production of a tunable bandgap material with a variable band-edge from the visible to the UV range, including the solar blind region between 250-280nm. In addition to solid-state lighting, such a multifunctional material can be used for UV-Vis diode lasers and UV photodetectors in the solar blind region. This technology exploits six years of joint engineering and design of a proven, commercially operational autoclave from APC and Clemson University. The technology can contain the high temperatures and pressures required for hydrothermal growth of oxide crystals (700 C and 4kbar). To accomplish the objectives of Phase I the current hydrothermal model autoclave design will be adapted to work for ammonothermal crystal growth. Broader Impacts project will support the next generation of crystal growth technology in the United States. It will develop a commercially viable route to a key material in solid-state lighting, UV-Vis diode lasers and UV photodetection. The crystal growth industry has exited the United States, leaving a significant gap in the ability to produce strategically important solids onshore. The technical skills to grow single crystals for important materials have decreased significantly in the US. This project will develop a next generation technology that will contribute to US self-sufficiency in a strategic area of materials science. The project will also lead to training of a young postdoctoral fellow in the field of crystal growth, an area that is underdeveloped in the US. The project will also contribute to energy self-sufficiency. Solid-state lighting is expected to save significant energy by improving efficiency and minimizing waste heat. A primary limitation to widespread introduction of solid-state lighting is lack of suitable substrates. This project will provide materials that will enable much high efficiency and long life solid state lighting as well as solid state diode lasers and various other technologies that will provide competitive advantage to the US. Advanced Photonic Crystals is a company that received a SBIR Phase II grant for a project entitled: Hydrothermal Growth of Ultra-High Performance Nd. Their project will focus on the development of a commercial process for the growth of Neodymium Yttrium Vanadate (Nd: YVO4) single crystals for use in solid-state lasers. This research will generate the commercially viable conditions for growth of large boules of single crystals suitable for use in diode pumped solid-state lasers. The hydrothermal method is a low temperature growth technique that leads to crystals containing less thermal strain, much fewer defects and greater homogeneity than conventional methods. These defects combine to cause considerable optical loss and concomitant reduction in performance. The hydrothermal technique has slower growth kinetics and requires chemical development for economically viable growth. In the Phase I project, preliminary growth conditions that lead to suitable single crystals were identified. These conditions include approximate thermal ranges, a variety of starting materials, seed crystals and mineralizer concentrations. In the Phase II project growth conditions will be systematically optimized to provide suitable transport rates and crystal quality. Once an acceptable growth is developed, the resulting boules will be evaluated for performance efficiency and loss. Commercially benefits will emerge as the company introduces new higher performance crystal materials to the market that cannot be grown by existing crystal growth methods. In addition, new laser materials will be donated to Clemson University for design of new laser devices and cavities supporting the University's participation in the emerging photonics Coalition of the Carolinas that includes Clemson, the OptoElectronics Center at UNC-Charlotte, COMSET at Clemson University, and the Carolina MicroOptics Consortium.
Lawrenceville Plasma Physics is a high-tech research and development corporation specializing in applications of plasma physics, including fusion power and intense X-ray sources. The company's lead project is the development of an ecologicaly safe fusion energy generator using a device called the dense plasma focus (DPF) and hydrogen-boron fuel called "Focus Fusion". LPP's technology and peer-reviewed science are guiding the design of this technology for this virutally unlimited source of clean energy that can be significantly cheaper than any other energy sources currently in use.
Aerophase, Inc. is a Longmont, CO based company that has received a grant(s) from the Department of Energy's SBIR/STTR program. The abstract(s) for these grant award(s) are provided as well since they provide insights into Aerophase, Inc.'s business and areas of expertise. Biodiesel is a key component in US plans to reduce dependence on foreign oil and decrease the environmental impacts of using fossil fuels—but current feedstocks and production technologies prevent it from being cost-competitive. This project will provide enabling technologies for a costeffective, energy-efficient method of producing biodiesel fuels from a variety of lowercost feedstocks. Biodiesel is a key component in U.S. plans to reduce dependence on foreign oil and decrease the environmental impacts of using fossil fuels—but current production technology is not cost-competitive. This project will provide enabling technologies for a cost-effective, energy-efficient method of producing biodiesel fuels.